Python 全栈体系【四阶】(六)

news2024/11/30 2:27:52

第四章 机器学习

五、线性模型

1. 概述

线性模型是自然界最简单的模型之一,它描述了一个(或多个)自变量对另一个因变量的影响是呈简单的比例、线性关系。例如:

住房每平米单价为 1 万元,100 平米住房价格为 100 万元,120 平米住房为 120 万元;

一台挖掘机每小时挖 100 m 3 100m^3 100m3沙土,工作 4 小时可以挖掘 400 m 3 400m^3 400m3沙土.。

线性模型在二维空间内表现为一条直线,在三维空间内表现为一个平面,更高维度下的线性模型很难用几何图形来表示(称为超平面)。如下图所示:

在这里插入图片描述
二维空间下线性模型表现为一条直线 二维空间下线性模型表现为一条直线 二维空间下线性模型表现为一条直线

在这里插入图片描述
三维空间下线性模型表现为一个平面 三维空间下线性模型表现为一个平面 三维空间下线性模型表现为一个平面

线性回归是要根据一组输入值和输出值(称为样本),寻找一个线性模型,能最佳程度上拟合于给定的数值分布,从而再给定新的输入时预测输出.样本如下表所示:

输入(x)输出(y)
0.55.0
0.65.5
0.86.0
1.16.8
1.46.8

根据样本拟合的线性模型如下图所示:

在这里插入图片描述

2. 线性模型定义

设给定一组属性 x , x = ( x 1 ; x 2 ; . . . ; x n ) x, x=(x_1;x_2;...;x_n) x,x=(x1;x2;...;xn),线性方程的一般表达形式为:

y = w 1 x 1 + w 2 x 2 + w 3 x 3 + . . . + w n x n + b y = w_1x_1 + w_2x_2 + w_3x_3 + ... + w_nx_n + b y=w1x1+w2x2+w3x3+...+wnxn+b

写成向量形式为:

y = w T x + b y = w^Tx + b y=wTx+b

其中, w = ( w 1 ; w 2 ; . . . ; w n ) , x = ( x 1 ; x 2 ; . . . ; x n ) w=(w_1;w_2;...;w_n), x=(x_1;x_2;...;x_n) w=(w1;w2;...;wn),x=(x1;x2;...;xn),w 和 b 经过学习后,模型就可以确定。当自变量数量为 1 时,上述线性模型即为平面下的直线方程:
y = w x + b y=wx+b y=wx+b
线性模型形式简单、易于建模,却蕴含着机器学习中一些重要的基本思想。许多功能强大的非线性模型可以在线性模型基础上引入层级结构或高维映射而得。此外,由于 w w w直观表达了各属性在预测中的重要性,因此线性模型具有很好的可解释性。例如,判断一个西瓜是否为好瓜,可以用如下表达式来判断:

f 好瓜 ( x ) = 0.2 x 色泽 + 0.5 x 根蒂 + 0.3 x 敲声 + 1 f_{好瓜}(x) = 0.2x_{色泽} + 0.5x_{根蒂} + 0.3x_{敲声} + 1 f好瓜(x)=0.2x色泽+0.5x根蒂+0.3x敲声+1

上述公式可以解释为,一个西瓜是否为好瓜,可以通过色泽、根蒂、敲声等因素共同判断,其中根蒂最重要(权重最高),其次是敲声和色泽。

3. 模型训练

在二维平面中,给定两点可以确定一条直线。但在实际工程中,可能有很多个样本点,无法找到一条直线精确穿过所有样本点,只能找到一条与样本”足够接近“或”距离足够小“的直线,近似拟合给定的样本。如下图所示:

在这里插入图片描述

如何确定直线到所有样本足够近呢?可以使用损失函数来进行度量。

3.1 损失函数

损失函数用来度量真实值(由样本中给出)和预测值(由模型算出)之间的差异。损失函数值越小,表明模型预测值和真实值之间差异越小,模型性能越好;损失函数值越大,模型预测值和真实值之间差异越大,模型性能越差。在回归问题中,均方差是常用的损失函数,其表达式如下所示:

E = 1 2 ∑ i = 1 n ( y − y ′ ) 2 E = \frac{1}{2}\sum_{i=1}^{n}{(y - y')^2} E=21i=1n(yy)2

其中,y 为模型预测值,y’为真实值。均方差具有非常好的几何意义,对应着常用的欧几里得距离(简称欧式距离)。线性回归的任务是要寻找最优线性模型,是的损失函数值最小,即:

( w ∗ , b ∗ ) = a r g m i n 1 2 ∑ i = 1 n ( y − y ′ ) 2 = a r g m i n 1 2 ∑ i = 1 n ( y ′ − w x i − b ) 2 (w^*, b^*) = arg min \frac{1}{2}\sum_{i=1}^{n}{(y - y')^2} \\ = arg min \frac{1}{2}\sum_{i=1}^{n}{(y' - wx_i - b)^2} (w,b)=argmin21i=1n(yy)2=argmin21i=1n(ywxib)2

基于均方误差最小化来进行模型求解的方法称为“最小二乘法”。线性回归中,最小二乘法就是试图找到一条直线,是所有样本到直线的欧式距离之和最小。可以将损失函数对 w 和 b 分别求导,得到损失函数的导函数,并令导函数为 0 即可得到 w 和 b 的最优解。

PS:机器学习主方向:

  • 找到拟合当前数据的最优的模型

  • 寻找最优的模型参数

  • 使用梯度下降求损失函数的极小值

3.2 梯度下降法
3.2.1 为什么使用梯度下降

在实际计算中,通过最小二乘法求解最优参数有一定的问题:

(1)最小二乘法需要计算逆矩阵,有可能逆矩阵不存在;

(2)当样本特征数量较多时,计算逆矩阵非常耗时甚至不可行。

所以,在实际计算中,通常采用梯度下降法来求解损失函数的极小值,从而找到模型的最优参数。

3.2.2 什么是梯度下降

梯度(gradient)是一个向量(矢量,有方向),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大。损失函数沿梯度相反方向收敛最快(即能最快找到极值点)。当梯度向量为零(或接近于零),说明到达一个极值点,这也是梯度下降算法迭代计算的终止条件。

这种按照负梯度不停地调整函数权值的过程就叫作“梯度下降法”。通过这样的方法,改变权重让损失函数的值下降得更快,进而将值收敛到损失函数的某个极小值。

通过损失函数,我们将“寻找最优参数”问题,转换为了“寻找损失函数最小值”问题。梯度下降法算法描述如下:

(1)损失是否足够小?如果不是,计算损失函数的梯度。
(2)按梯度的反方向走一小步,以缩小损失。
(3)循环到(1)。

在这里插入图片描述
梯度下降法中通过沿着梯度负方向不断调整参数,从而逐步接近损失函数极小值所在点。如下图所示:
在这里插入图片描述

3.2.3 参数更新法则

在直线方程中,有两个参数需要学习, w 0 w_0 w0 w 1 w_1 w1,梯度下降过程中,分别对这两个参数单独进行调整,调整法则如下:

w 0 = w 0 + Δ w 0 w 1 = w 1 + Δ w 1 w_0 = w_0 + \Delta w_0\\w_1 = w_1 + \Delta w_1 w0=w0+Δw0w1=w1+Δw1

Δ w 0 \Delta w_0 Δw0 Δ w 1 \Delta w_1 Δw1可表示为:
Δ w 0 = − η Δ l o s s Δ w 0 Δ w 1 = − η Δ l o s s Δ w 1 \Delta w_0 = -\eta \frac{\Delta loss}{\Delta w_0}\\\Delta w_1 = -\eta \frac{\Delta loss}{\Delta w_1}\\ Δw0=ηΔw0ΔlossΔw1=ηΔw1Δloss

其中, η \eta η称为学习率, Δ l o s s Δ w i \frac{\Delta loss}{\Delta w_i} ΔwiΔloss为梯度(即损失函数关于参数 w i w_i wi的偏导数)。损失函数表达式为:
l o s s = 1 2 ∑ ( y − y ′ ) 2 = 1 2 ∑ ( ( y − ( w 0 + w 1 x ) ) 2 ) loss =\frac{1}{2}\sum(y - y')^2 = \frac{1}{2}\sum((y-(w_0+w_1x))^2) loss=21(yy)2=21((y(w0+w1x))2)

对损失函数求导(求导过程见补充知识),可得 w 0 , w 1 w_0, w_1 w0,w1的偏导数为:

Δ l o s s Δ w 0 = ∑ ( ( y − y ′ ) ( − 1 ) ) = − ∑ ( y − y ′ ) Δ l o s s Δ w 1 = ∑ ( ( y − y ′ ) ( − x ) ) = − ∑ ( x ( y − y ′ ) ) \frac{\Delta loss}{\Delta w_0} = \sum((y - y')(-1)) = -\sum(y - y')\\\frac{\Delta loss}{\Delta w_1} = \sum((y - y')(-x)) = -\sum(x(y - y')) Δw0Δloss=((yy)(1))=(yy)Δw1Δloss=((yy)(x))=(x(yy))

PS:超参数

  • 在构建模型时,需要设定一系列的参数,而这些参数可以决定模型的精度。超参数的设定一般取决于经验。

4. 实现线性回归

4.1 自己编码实现

以下是实现线性回归的代码:

# 线性回归示例
import numpy as np
import matplotlib.pyplot as mp
from mpl_toolkits.mplot3d import axes3d
import sklearn.preprocessing as sp

# 训练数据集
train_x = np.array([0.5, 0.6, 0.8, 1.1, 1.4])  # 输入集
train_y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])  # 输出集

n_epochs = 1000  # 迭代次数
lrate = 0.01  # 学习率
epochs = []  # 记录迭代次数
losses = []  # 记录损失值

w0, w1 = [1], [1]  # 模型初始值

for i in range(1, n_epochs + 1):
    epochs.append(i)  # 记录第几次迭代

    y = w0[-1] + w1[-1] * train_x  # 取出最新的w0,w1计算线性方程输出
    # 损失函数(均方差)
    loss = (((train_y - y) ** 2).sum()) / 2
    losses.append(loss)  # 记录每次迭代的损失值

    print("%d: w0=%f, w1=%f, loss=%f" % (i, w0[-1], w1[-1], loss))

    # 计算w0,w1的偏导数
    d0 = -(train_y - y).sum()
    d1 = -(train_x * (train_y - y)).sum()

    # 更新w0,w1
    w0.append(w0[-1] - (d0 * lrate))
    w1.append(w1[-1] - (d1 * lrate))

程序执行结果:

1 w0=1.00000000 w1=1.00000000 loss=44.17500000
2 w0=1.20900000 w1=1.19060000 loss=36.53882794
3 w0=1.39916360 w1=1.36357948 loss=30.23168666
4 w0=1.57220792 w1=1.52054607 loss=25.02222743
5 w0=1.72969350 w1=1.66296078 loss=20.71937337
......
996 w0=4.06506160 w1=2.26409126 loss=0.08743506
997 w0=4.06518850 w1=2.26395572 loss=0.08743162
998 w0=4.06531502 w1=2.26382058 loss=0.08742820
999 w0=4.06544117 w1=2.26368585 loss=0.08742480
1000 w0=4.06556693 w1=2.26355153 loss=0.08742142

可以给数据加上可视化,让结果更直观.添加如下代码:


###################### 训练过程可视化 ######################
# 训练过程可视化
## 损失函数收敛过程
w0 = np.array(w0[:-1])
w1 = np.array(w1[:-1])

mp.figure("Losses", facecolor="lightgray")  # 创建一个窗体
mp.title("epoch", fontsize=20)
mp.ylabel("loss", fontsize=14)
mp.grid(linestyle=":")  # 网格线:虚线
mp.plot(epochs, losses, c="blue", label="loss")
mp.legend()  # 图例
mp.tight_layout()  # 紧凑格式

## 显示模型直线
pred_y = w0[-1] + w1[-1] * train_x  # 根据x预测y
mp.figure("Linear Regression", facecolor="lightgray")
mp.title("Linear Regression", fontsize=20)
mp.xlabel("x", fontsize=14)
mp.ylabel("y", fontsize=14)
mp.grid(linestyle=":")
mp.scatter(train_x, train_y, c="blue", label="Traing")  # 绘制样本散点图
mp.plot(train_x, pred_y, c="red", label="Regression")
mp.legend()

# 显示梯度下降过程(复制粘贴即可,不需要编写)
# 计算损失函数曲面上的点 loss = f(w0, w1)
arr1 = np.linspace(0, 10, 500)  # 0~9间产生500个元素的均匀列表
arr2 = np.linspace(0, 3.5, 500)  # 0~3.5间产生500个元素的均匀列表

grid_w0, grid_w1 = np.meshgrid(arr1, arr2)  # 产生二维矩阵

flat_w0, flat_w1 = grid_w0.ravel(), grid_w1.ravel()  # 二维矩阵扁平化
loss_metrix = train_y.reshape(-1, 1)  # 生成误差矩阵(-1,1)表示自动计算维度
outer = np.outer(train_x, flat_w1)  # 求外积(train_x和flat_w1元素两两相乘的新矩阵)
# 计算损失:((w0 + w1*x - y)**2)/2
flat_loss = (((flat_w0 + outer - loss_metrix) ** 2).sum(axis=0)) / 2
grid_loss = flat_loss.reshape(grid_w0.shape)

mp.figure('Loss Function')
ax = mp.gca(projection='3d')
mp.title('Loss Function', fontsize=14)
ax.set_xlabel('w0', fontsize=14)
ax.set_ylabel('w1', fontsize=14)
ax.set_zlabel('loss', fontsize=14)
ax.plot_surface(grid_w0, grid_w1, grid_loss, rstride=10, cstride=10, cmap='jet')
ax.plot(w0, w1, losses, 'o-', c='orangered', label='BGD', zorder=5)
mp.legend(loc='lower left')

mp.show()

数据可视化结果如下图所示:

在这里插入图片描述
回归得到的线性模型 回归得到的线性模型 回归得到的线性模型

在这里插入图片描述
损失函数收敛过程 损失函数收敛过程 损失函数收敛过程

在这里插入图片描述


梯度下降过程 梯度下降过程 梯度下降过程

4.2 通过 sklearn API 实现

同样,可以使用 sklearn 库提供的 API 实现线性回归。代码如下:

# 利用LinearRegression实现线性回归
import numpy as np
import sklearn.linear_model as lm  # 线性模型# 线性模型
import sklearn.metrics as sm  # 模型性能评价模块
import matplotlib.pyplot as mp
​
train_x = np.array([[0.5], [0.6], [0.8], [1.1], [1.4]])  # 输入集
train_y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])  # 输出集# 创建线性回归器
model = lm.LinearRegression()
# 用已知输入、输出数据集训练回归器
model.fit(train_x, train_y)

# 输入数据x:必须是二维
# 输出数据y:最好是一维的
# 根据训练模型预测输出
pred_y = model.predict(train_x)

print("coef_:", model.coef_)  # 系数
print("intercept_:", model.intercept_)  # 截距

# 可视化回归曲线
mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')

# 绘制样本点
mp.scatter(train_x, train_y, c='blue', alpha=0.8, s=60, label='Sample')

# 绘制拟合直线
mp.plot(train_x,  # x坐标数据
        pred_y,  # y坐标数据
        c='orangered', label='Regression')

mp.legend()
mp.show()

执行结果:

在这里插入图片描述

5. 模型评价指标

(1)平均绝对误差(Mean Absolute Deviation):单个观测值与预测值的偏差的绝对值的平均;

(2)均方误差:单个样本到平均值差值的平方平均值;

(3)MAD(中位数绝对偏差):与数据中值绝对偏差的中值;

在这里插入图片描述

(4)R2 决定系数:趋向于 1,模型越好;趋向于 0,模型越差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1318070.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

发现隐藏的 Web 应用程序漏洞

随着 Web 2.0 的扩展,近年来社交媒体平台、电子商务网站和电子邮件客户端充斥着互联网空间,Web 应用程序已变得无处不在。 国际知名网络安全专家、东方联盟创始人郭盛华透露:‘应用程序消耗和存储更加敏感和全面的数据,它们成为对…

MIT6.S081-实验准备

实验全程在Vmware虚拟机 (镜像:Ubuntu-20.04-beta-desktop-amd64) 中进行 一、版本控制 1.1 将mit的实验代码克隆到本地 git clone git://g.csail.mit.edu/xv6-labs-2020 1.2 修改本地git配置文件 创建github仓库,记录仓库地址 我的仓库地址就是htt…

国内最好的开源MES/免费MES/低代码MES

一、系统概述: 万界星空科技免费MES、开源MES、商业开源MES、市面上最好的开源MES、MES源代码、适合二开的开源MES、功能最全的开源MES、好看的数字大屏、开源自动排班系统、开源质检系统。 1.万界星空开源MES制造执行系统的Java开源版本。 开源mes系统包括系统管…

Java与前端:风云变幻的技术之路

前言 近日,有关“Java已死、前端已凉”的言论在IT圈内流传甚广,引起了广泛关注和讨论。这究竟是真相还是一场对技术人员的焦虑贩卖呢?让我们一同探讨这场技术风暴带来的变化与机遇,并分享一些实用的建议。 一、技术变革的常态 …

0x31 质数

0x31 质数 定义: 若一个正整数无法被除了1和它自身之外的任何自然数整除,则称该数为质数(或素数),否则则称该正整数为合数。 在整个自然数集合中,质数的数量不多,分布比较稀疏,对…

Support Vector Machine(SVM)——支持向量机

1.从逻辑回归到SVM 回顾一下逻辑回归的模型 然后经过sigmoid函数得到预测y1的概率,sigmoid函数如下图 对于单个样本来说损失函数如下 当一个输入的真实标签为1时,损失函数就只剩,如左图所示,我们想要让,来使损失函数尽可能的小 对…

实验报告九、使用枚举法验证6174猜想

一、实验目的: 1、了解6174猜想的内容。 2、熟练使用选择结构和循环结构。 3、了解标准库itertools中combinations()函数的用法。 4、熟练使用字符串的join(方法。 5、熟练使用内置函数int()、str()、 sorted()。 二、实验内容: 1955…

机器学习的数据管理

.机器学习的数据管理注意事项 机器学习的生命周期包括如下部分 (1).业务的理解,机器学习问题框架 (2).数据理解和收集 (3).模型的训练和评估 (4)模型部署 (5).模型监控 (6).业务衡量 数据管理和机器学习的生命周期的2,3,4个阶段有关。…

Pikachu漏洞练习平台之暴力破解(基于burpsuite)

从来没有哪个时代的黑客像今天一样热衷于猜解密码 ---奥斯特洛夫斯基 Burte Force(暴力破解)概述 “暴力破解”是一攻击具手段,在web攻击中,一般会使用这种手段对应用系统的认证信息进行获取。 其过程就是使用大量的认证信息在认…

【STM32】STM32学习笔记-EXTI外部中断(11)

00. 目录 文章目录 00. 目录01. 中断系统02. 中断执行流程03. STM32中断04. NVIC基本结构05. NVIC优先级分组06. EXTI简介07. EXTI基本结构08. AFIO复用IO口09. EXTI框图10. 计数器模块11. 旋转编码器简介12. 附录 01. 中断系统 中断:在主程序运行过程中&#xff0…

使用PyQt5连接mysql数据库实现用户管理(增,删,改,查,附代码和完整界面)

一:环境搭建 首先本地需要安装python,PyQt5环境,我是用pip安装的 python -m pip install PyQt5 或者 pip install PyQt5 python -m pip install PyQt5-tools 或者 pip install PyQt5-tools 如果网络不好,还可以使用其他源 pip install PyQt…

C++中的继承(一)

文章目录 前言概念访问限定符基类和派生类的赋值转换继承中的作用域派生类的默认成员函数构造函数 拷贝构造析构函数 继承的其他一些细节 前言 我们之前说过,继承是面向对象的三大特性。 面向对象的三大特性: 封装、继承、多态。 封装在类和对象体现出…

大一python题库刷题训练,大一python填空题题库

大家好,给大家分享一下大一python题库及答案和分析,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! 这篇文章主要介绍了大一python上机题库及答案,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完…

【线性代数】期末速通!

1. 行列式的性质 1.1 求一个行列式的值 特殊地,对角线左下全为0,结果为对角线乘积。行 r 列 c 1.2 性质 某行(列)加上或减去另一行(列)的几倍,行列式不变某行(列)乘 …

智能优化算法应用:基于海洋捕食者算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于海洋捕食者算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于海洋捕食者算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.海洋捕食者算法4.实验参数设定5.算法…

git-lfs基本知识讲解

目录 1. 基本知识2. 安装 1. 基本知识 git-lfs 是 Git Large File Storage 的缩写,是 Git 的一个扩展,用于处理大文件的版本控制。 它允许你有效地管理和存储大型二进制文件,而不会使 Git 仓库变得过大和不稳定。以下是一些与 git-lfs 相关…

mysql原理--InnoDB的表空间

1.概述 通过前边儿的内容大家知道, 表空间 是一个抽象的概念。 对于系统表空间来说,对应着文件系统中一个或多个实际文件;对于每个独立表空间来说,对应着文件系统中一个名为 表名.ibd 的实际文件。可以把表空间想象成被切分为许许…

仿易订货的订货系统源码一般多少钱

易订货是一款面向中小企业的B2B电子商务平台,旨在提供一站式的采购和销售解决方案。不少批发商贸企业在数字化转型的时候会采用订货系统,今天我们谈谈仿易订货的订货系统源码需要多少钱。 这款订货系统是一款SaaS,所以它是不面向市场销售源码…

Java 第9章 房屋出租系统

设计 如图是系统的分层结构,包括了界面层、业务层和数据层。 单独建包:由于在实际开发过程中,可能会出现管理多个界面的情况,所以界面需要单独建包,其他同理。 开发任务:从界面层深入到业务层&#xff0c…

ce从初阶到大牛--函数

1、显示/etc/passwd文件中以bash结尾的行; grep "bash$" /etc/passwd2、找出/etc/passwd文件中的三位或四位数; grep -E \b[0-9]{3,4}\b /etc/passwd3、找出/etc/grub2.cfg文件中,以至少一个空白字符开头,后面又跟了非…