【数学建模】《实战数学建模:例题与讲解》第十二讲-因子分析、判别分析(含Matlab代码)

news2024/12/23 19:32:42

【数学建模】《实战数学建模:例题与讲解》第十二讲-因子分析、判别分析(含Matlab代码)

    • 基本概念
        • 时间判别
        • 费歇判别
        • 贝叶斯判别
    • 习题10.3
      • 1. 题目要求
      • 2.解题过程
      • 3.程序
      • 4.结果
    • 习题10.6(1)
      • 1. 题目要求
      • 2.解题过程——对应分析
      • 3.程序
      • 4.结果
    • 习题10.6(2)
      • 1. 题目要求
      • 2.解题过程——R型因子分析
      • 3.程序
      • 4.结果
    • 习题10.6(3)
      • 1. 题目要求
      • 2.解题过程——聚类分析
      • 3.程序
      • 4.结果

本系列侧重于例题实战与讲解,希望能够在例题中理解相应技巧。文章开头相关基础知识只是进行简单回顾,读者可以搭配课本或其他博客了解相应章节,然后进入本文正文例题实战,效果更佳。

如果这篇文章对你有帮助,欢迎点赞与收藏~
在这里插入图片描述

基本概念

判别分析是一种统计方法,它根据所研究的个体的观测指标来推断该个体所属类型。在自然科学和社会科学的研究中经常会碰到这种统计问题。例如,质找矿中要根据某异常点的地质结构、化探和物探的各项指标来判断该异常点属于哪种矿化类型;医生要根据某人的各项化验指标的结果来判断属于什么病症;调查某地区的土生产率、劳动生产率、人均收入、费用水平、农村工业比例指标,确定该地区属于哪种经济类型区等。

判别分析的目的是对已知分类的数据建立由数值指标构成的分类规则,然后把这样的规则应用到未知分类的样本去分类。例如,我们有了患胃炎的病人和健康人的一些化验指标,就可以从这些化验指标发现两类人的区别,把这种区别表示为一个判别公式,然后对怀疑患胃炎的人就可以根据其化验指标用判别公式诊断。

判别分析的方法按照判别的组数来区分,可以分为两组判别分析和多组判别分析。判别分析中,根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。

时间判别

时间判别是一种判别分析方法,它是根据时间序列的特征来判断时间序列所属的类别。时间序列是指按时间顺序排列的一组数据,它是一种重要的数据类型,广泛应用于金融、经济、气象、环境、医学等领域。时间判别的方法有很多,例如,基于时间序列的自回归模型、移动平均模型、ARMA模型等。

费歇判别

Fisher判别是一种线性判别方法,它是根据样本的特征向量来判断样本所属的类别。Fisher判别的基本思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。

贝叶斯判别

贝叶斯判别是一种概率判别方法,它是根据贝叶斯定理来判断样本所属的类别。贝叶斯判别的基本思想是,对于给定的样本,计算它属于每个类别的后验概率,然后将样本判给后验概率最大的那个类别。贝叶斯判别的方法有很多,例如,朴素贝叶斯分类、高斯混合模型等。

习题10.3

1. 题目要求

image-20230531202409425

image-20230531202422992

2.解题过程

解:

先将数据标准化,记第 i i i 个评价对象的第 j j j 个评价指标值为 a i j , i = 1 , 2 , . . . 25 ; j = 1 , 2 , . . . 7 a_{ij},i=1,2,...25;j=1,2,...7 aij,i=1,2,...25;j=1,2,...7 ,将 a i j a_{ij} aij 标准化为 a ~ i j \widetilde{a}_{ij} a ij
a ~ i j = a i j − μ j s j \widetilde{a}_{ij}=\frac{a_{ij}-\mu_j}{s_j} a ij=sjaijμj
式中:
μ j = 1 25 ∑ i = 1 25 a i j \mu_j=\frac{1}{25}\sum_{i=1}^{25}a_{ij} μj=251i=125aij

s j = 1 25 − 1 ∑ i = 1 25 ( a i j − μ j ) 2 s_j=\sqrt{\frac{1}{25-1}\sum_{i=1}^{25}(a_{ij}-\mu_j)^2} sj=2511i=125(aijμj)2

接下来计算相关系数矩阵 R \mathbf{R} R :
R = ( r i j ) 7 × 7 \mathbf{R}=(r_{ij})_{7\times7} R=(rij)7×7

r i j = ∑ k = 1 25 a ~ k i ⋅ a ~ k j , i , j = 1 , 2 , . . . , 7 r_{ij}=\frac{\sum_{k=1}^{25}}{\widetilde{a}_{ki}\cdot\widetilde{a}_{kj}},i,j=1,2,...,7 rij=a kia kjk=125,i,j=1,2,...,7

式中 r i i = 1 , r j i = r i j , r i j r_{ii}=1,r_{ji}=r{ij},r_{ij} rii=1,rji=rij,rij 是第 i i i 指标和第 j j j 指标的相关系数。

计算初等载荷矩阵,首先算出相关矩阵 R \mathbf{R} R 的特征值 λ 1 ≥ λ 2 ≥ . . . ≥ λ 7 \lambda_1\geq\lambda_2\geq...\geq\lambda_7 λ1λ2...λ7,以及应的特征向量 u 1 , u 2 , . . . , u 7 \mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_7 u1,u2,...,u7,则初等载荷矩阵为:
Λ 1 = [ λ 1 u 1 , λ 1 u 2 , . . . , λ 1 u 7 ] \mathbf{\Lambda}_1=[\sqrt{\lambda_1}\mathbf{u}_1,\sqrt{\lambda_1}\mathbf{u}_2,...,\sqrt{\lambda_1}\mathbf{u}_7] Λ1=[λ1 u1,λ1 u2,...,λ1 u7]
计算得出前三个特征值的贡献率达到了 98 % 98\% 98% ,选择三个主因子,对提取的因子载荷矩阵进行旋转,得到矩阵 Λ 2 = Λ 1 ( 3 ) T \mathbf{\Lambda}_2=\mathbf{\Lambda}^{(3)}_1\mathbf{T} Λ2=Λ1(3)T ,

Λ 1 \mathbf{\Lambda}_1 Λ1的前三列, T \mathbf{T} T为正交矩阵,构造因子模型:
{ x ~ 1 = α 11 F ~ 1 + α 12 F ~ 2 + α 13 F ~ 3 ⋮ x ~ 7 = α 71 F ~ 1 + α 72 F ~ 2 + α 73 F ~ 3 \begin{align*} \begin{cases} \widetilde{x}_1=\alpha_{11}\widetilde{F}_1+\alpha_{12}\widetilde{F}_2+\alpha_{13}\widetilde{F}_3 \\ \vdots\\ \widetilde{x}_7=\alpha_{71}\widetilde{F}_1+\alpha_{72}\widetilde{F}_2+\alpha_{73}\widetilde{F}_3 \end{cases} \end{align*} x 1=α11F 1+α12F 2+α13F 3x 7=α71F 1+α72F 2+α73F 3
最终,得到了三个因子,第一个因子是 x 1 x_1 x1 ,第二个因子是 x 5 x_5 x5 ,第三个因子是 x 2 x_2 x2

3.程序

求解的MATLAB程序如下:

clc, clear

% 给定的原始数据矩阵
dd = [3.76, 3.66, 0.54, 5.28, 9.77, 13.74, 4.78; ...
    8.59, 4.99, 1.34, 10.02, 7.5, 10.16, 2.13; ...
    6.22, 6.14, 4.52, 9.84, 2.17, 2.73, 1.09; ...
    7.57, 7.28, 7.07, 12.66, 1.79, 2.1, 0.82; ...
    9.03, 7.08, 2.59, 11.76, 4.54, 6.22, 1.28; ...
    5.51, 3.98, 1.3, 6.92, 5.33, 7.3, 2.4; ...
    3.27, 0.62, 0.44, 3.36, 7.63, 8.84, 8.39; ...
    8.74, 7, 3.31, 11.68, 3.53, 4.76, 1.12; ...
    9.64, 9.49, 1.03, 13.57, 13.13, 18.52, 2.35; ...
    9.73, 1.33, 1, 9.87, 9.87, 11.06, 3.7; ...
    8.59, 2.98, 1.17, 9.17, 7.85, 9.91, 2.62; ...
    7.12, 5.49, 3.68, 9.72, 2.64, 3.43, 1.19; ...
    4.69, 3.01, 2.17, 5.98, 2.76, 3.55, 2.01; ...
    5.51, 1.34, 1.27, 5.81, 4.57, 5.38, 3.43; ...
    1.66, 1.61, 1.57, 2.8, 1.78, 2.09, 3.72; ...
    5.9, 5.76, 1.55, 8.84, 5.4, 7.5, 1.97; ...
    9.84, 9.27, 1.51, 13.6, 9.02, 12.67, 1.75; ...
    8.39, 4.92, 2.54, 10.05, 3.96, 5.24, 1.43; ...
    4.94, 4.38, 1.03, 6.68, 6.49, 9.06, 2.81; ...
    7.23, 2.3, 1.77, 7.79, 4.39, 5.37, 2.27; ...
    9.46, 7.31, 1.04, 12, 11.58, 16.18, 2.42; ...
    9.55, 5.35, 4.25, 11.74, 2.77, 3.51, 1.05; ...
    4.94, 4.52, 4.5, 8.07, 1.79, 2.1, 1.29; ...
    8.21, 3.08, 2.42, 9.1, 3.75, 4.66, 1.72; ...
    9.41, 6.44, 5.11, 12.5, 2.45, 3.1, 0.91];

% 标准化数据(Z-score标准化)
stdd = zscore(dd);

% 计算标准化数据的相关系数矩阵
r = corrcoef(stdd);

% 使用PCA对相关系数矩阵进行主成分分析,获取特征向量(vec1)、特征值(val)和贡献率(con)
[vec1, val, con] = pcacov(r);

% 计算符号矩阵f1,其大小与vec1一致,元素值均为vec1所有元素的和的符号
f1 = repmat(sign(sum(vec1)), size(vec1, 1), 1);

% 将特征向量(vec1)与符号矩阵(f1)相乘,得到新的特征向量矩阵(vec2)
vec2 = vec1 .* f1;

% 计算矩阵f2,其大小与vec2一致,元素值均为val中的特征值的平方根
f2 = repmat(sqrt(val)', size(vec2, 1), 1);

% 将vec2与f2相乘,得到最终的载荷矩阵(a)
a = vec2 .* f2;

% 设定保留的主成分数目
num = 3;

% 保留前num个主成分
am = a(:, [1:num]);

% 使用varimax方法对主成分进行旋转,获得旋转后的载荷矩阵(b)以及得分矩阵(t)
[b, t] = rotatefactors(am, 'Method', 'varimax');

% 将未保留的主成分载荷也加入旋转后的载荷矩阵,得到旋转后的完整载荷矩阵(bt)
bt = [b, a(:, [num + 1:end])];

% 计算每个变量在各个主成分上的载荷的平方和,得到公共度(degree)
degree = sum(b.^2, 2);

% 计算每个主成分的总的贡献率(contr)
contr = sum(bt.^2);

% 计算被保留的主成分的累计贡献率(rate)
rate = contr(1:num) / sum(contr);

% 计算因子分析的系数矩阵(coef)
coef = inv(r) * b;

4.结果

image-20230601000137991

得到的因子分析表如下:

image-20230531203257585

得到了三个因子,第一个因子是 x 1 x_1 x1 ,第二个因子是 x 5 x_5 x5 ,第三个因子是 x 2 x_2 x2

习题10.6(1)

1. 题目要求

在这里插入图片描述

2.解题过程——对应分析

解:

分别用 i = 1 , … , 16 i=1,\dots,16 i=1,,16 表示,以 a i j a_{ij} aij 表示第 i 个地区第 j 个指标变量 x j x_j xj 的取值。

记:
A = ( a i j ) 16 × 6 \mathbf{A}=(a_{ij})_{16\times6} A=(aij)16×6
记:
a i ⋅ = ∑ j = 1 6 a i j , a ⋅ j = ∑ i = 1 16 a i j a_{i\cdot}=\sum_{j=1}^{6}a_{ij},a_{\cdot j}=\sum_{i=1}^{16}a_{ij} ai=j=16aij,aj=i=116aij
首先把 A \mathbf{A} A 化为规格化的“概率”矩阵 P \mathbf{P} P , 记 P = ( p i j ) 16 × 6 \mathbf{P}=(p_{ij})_{16\times6} P=(pij)16×6 ,其中 p i j = a i j / T p_{ij}=a_{ij}/\mathbf{T} pij=aij/T T = ∑ i = 1 16 ∑ j = 1 6 a i j \mathbf{T}=\sum_{i=1}^{16}\sum_{j=1}^{6}a_{ij} T=i=116j=16aij。再对数据进行对应变换,令 B = ( b i j ) 16 × 6 \mathbf{B}=(b_{ij})_{16\times6} B=(bij)16×6 ,其中:
b i j = p i j − p i ⋅ p ⋅ j p i ⋅ p ⋅ j = a i j − a i ⋅ a ⋅ j / T a i ⋅ a ⋅ j , i = 1 , 2 , … , 16 , j = 1 , 2 , … , 6. b_{ij}=\frac{p_{ij}-p_{i\cdot}p_{\cdot j}}{\sqrt{p_{i\cdot}p_{\cdot j}}} = \frac{a_{ij}-a_{i\cdot}a_{\cdot j}/\mathbf{T}}{\sqrt{a_{i\cdot}a_{\cdot j}}}, i=1,2,\dots, 16,j=1,2,\dots,6. bij=pipj pijpipj=aiaj aijaiaj/T,i=1,2,,16,j=1,2,,6.
B \mathbf{B} B 进行奇异值分解, B = U Λ V T \mathbf{B}=\mathbf{U}\varLambda \mathbf{V}^{\mathbf{T}} B=UΛVT,其中 U \mathbf{U} U 16 × 16 16\times 16 16×16 正交矩阵, V \mathbf{V} V 6 × 6 6\times6 6×6 正交矩阵, Λ = [ Λ m 0 0 0 ] \varLambda =\begin{bmatrix} \varLambda_m &0\\ 0&0 \end{bmatrix} Λ=[Λm000],这里 Λ m = d i a g ( d 1 , … , d m ) \varLambda_m=diag(d_1,\dots,d_m) Λm=diag(d1,,dm) ,其中 d i ( i = 1 , 2 , … , m ) d_i(i=1,2,\dots,m) di(i=1,2,,m) B \mathbf{B} B 的奇异值。

U = [ U 1 ⋮ U 2 ] , V = [ V 1 ⋮ V 2 ] \mathbf{U}=[\mathbf{U_1} \vdots \mathbf{U_2}],\mathbf{V}=[\mathbf{V_1} \vdots \mathbf{V_2}] U=[U1U2],V=[V1V2] ,其中 U 1 \mathbf{U_1} U1 16 × m 16\times m 16×m 的列正交矩阵, V 1 \mathbf{V_1} V1 6 × m 6\times m 6×m 的列正交矩阵,则 B \mathbf{B} B 的奇异值分解式等价于 B = U 1 Λ V 1 T \mathbf{B}=\mathbf{U_1}\varLambda\mathbf{V_1}^T B=U1ΛV1T

D r = d i a g ( p 1 ⋅ , p 2 ⋅ , … , p 16 ⋅ ) , D c = d i a g ( p ⋅ 1 , p ⋅ 2 , … , p ⋅ 6 ) \mathbf{D_r}=diag(p_{1\cdot},p_{2\cdot},\dots,p_{16\cdot}),\mathbf{D_c}=diag(p_{\cdot1},p_{\cdot2},\dots,p_{\cdot6}) Dr=diag(p1,p2,,p16),Dc=diag(p1,p2,,p6) ,其中 p i ⋅ = ∑ j = 1 6 p i j p_{i\cdot}=\sum_{j=1}^{6}p_{ij} pi=j=16pij p ⋅ j = ∑ i = 1 16 p i j p_{\cdot j}=\sum_{i=1}^{16}p_{ij} pj=i=116pij。则列轮廓的坐标为 F = D c − 1 / 2 V 1 Λ m \mathbf{F}=\mathbf{D}_{c}^{-1/2}\mathbf{V_1}\varLambda_m F=Dc1/2V1Λm ,行轮廓的坐标为 G = D r − 1 / 2 V 1 Λ m \mathbf{G}=\mathbf{D}_{r}^{-1/2}\mathbf{V_1}\varLambda_m G=Dr1/2V1Λm 。最后通过贡献率的比较确定需要截取的维数,形成对应分析图。

计算 B T B \mathbf{B^T}\mathbf{B} BTB 的特征值,惯量,表示相应维数对各类别的解释量,最大维数 m = min ⁡ 16 − 1 , 6 − 1 m=\min{16-1,6-1} m=min161,61 ,本例最多可以产生5个维数。从下表可看出,第一维数的解释量达 77.4% ,前两个维数的解释度已达92.1%。

维数奇异值惯量贡献率累积贡献率
10.1898930.0360590.7737640.773764
20.0828310.0068610.1472240.920988
30.0471380.0022220.0476180.968669
40.031130.0009690.0207950.989464
50.0221590.0004910.0105361

行坐标

北京天津河北山西内蒙古辽宁
第一维-0.07905-0.06783-0.263540.4577660.07715-0.13567
第二维-0.03540.138818-0.10045-0.057150.156316-0.08455
吉林黑龙江上海江苏浙江安徽
第一维-0.27126-0.197570.3868090.0869550.079122-0.14212
第二维-0.000740.045985-0.07833-0.04222-0.01969-0.14225
福建江西山东河南
第一维-0.17469-0.188590.069823-0.1462
第二维-0.11317-0.15270.1003180.032858

列坐标

x1x2x3x4x5x6
第一维-0.07905-0.06783-0.263540.4577660.07715-0.13567
第二维-0.03540.138818-0.10045-0.057150.156316-0.08455

在下图中,给出16个地区和6个指标在相同坐标系上绘制的散布图。

在这里插入图片描述

从图中可以看出,地区和指标点可以分为两类,

第一类包括指标点 x 4 , x 5 x_4,x_5 x4,x5 ,地区点为北京、天津、河北、上海、江苏、浙江、山东;

第二类包括指标点 x 1 , x 2 , x 3 , x 6 x_1,x_2,x_3,x_6 x1,x2,x3,x6 ,地区点为其余地区。

3.程序

求解的MATLAB程序如下:

clc, clear

% 原始数据,其中包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 计算原始数据的总和
totalSum = sum(sum(originalData));

% 计算原始数据的比例
ratioData = originalData / totalSum;

% 计算行和列的比例
rowRatio = sum(ratioData, 2);
columnRatio = sum(ratioData);

% 计算行剖面数据
Row_prifile = originalData ./ repmat(sum(originalData, 2), 1, size(originalData, 2));

% 计算B(B为对应分析的基础矩阵)
B = (ratioData - rowRatio * columnRatio) ./ sqrt(rowRatio*columnRatio);

% 对B矩阵进行奇异值分解,得到U,S,V矩阵
[U, S, V] = svd(B, 'econ');

% 对V矩阵列求和并根据其符号调整权重
W1 = sign(repmat(sum(V), size(V, 1), 1));

% 对U矩阵列求和并根据其符号调整权重
W2 = sign(repmat(sum(V), size(U, 1), 1));

% 应用权重调整V和U矩阵
V_adjusted = V .* W1;
U_adjusted = U .* W2;

% 计算lambda(特征值的平方)
lambda = diag(S).^2;

% 计算卡方统计量
chi2Square = totalSum * (lambda);

% 计算总的卡方统计量
totalChi2Square = sum(chi2Square);

% 计算贡献率
contributionRate = lambda / sum(lambda);

% 计算累计贡献率
cumulativeRate = cumsum(contributionRate);

% 计算行轮廓坐标
beta = diag(rowRatio.^(-1 / 2)) * U_adjusted;
G = beta * S

% 计算列轮廓坐标
alpha = diag(columnRatio.^(-1 / 2)) * V_adjusted;
F = alpha * S

% 计算样本点的个数
numOfSample = size(G, 1);

% 计算坐标的取值范围
range = minmax(G(:, [1, 2])');

% 画图略

4.结果

image-20231213134106477

详见上文分析过程,地区和指标点可以分为两类,

第一类包括指标点 x 4 , x 5 x_4,x_5 x4,x5 ,地区点为北京、天津、河北、上海、江苏、浙江、山东;

第二类包括指标点 x 1 , x 2 , x 3 , x 6 x_1,x_2,x_3,x_6 x1,x2,x3,x6 ,地区点为其余地区。

习题10.6(2)

1. 题目要求

同上。

2.解题过程——R型因子分析

解:

对数据进行标准化处理。

计算变量间的相关系数得出相关矩阵 R \mathbf{R} R ,然后计算初等载荷矩阵 Λ 1 \mathbf{\Lambda_1} Λ1

计算得到特征根与各因子的贡献如下表所示。

valuex1x2x3x4x5x6
特征值3.558421.3162520.6082390.3733830.1071780.036527
贡献率59.3070121.9375410.137326.2230521.7862950.608786
累积贡献率59.3070181.2445491.3818797.6049299.39121100

选择 m ( m ≤ 6 ) m(m\leq6) m(m6) 个主因子,构造因子模型:
{ x ~ 1 = α 11 F ~ 1 + α 12 F ~ 2 + α 13 F ~ 3 ⋮ x ~ 7 = α 71 F ~ 1 + α 72 F ~ 2 + α 73 F ~ 3 \begin{align*} \begin{cases} \widetilde{x}_1=\alpha_{11}\widetilde{F}_1+\alpha_{12}\widetilde{F}_2+\alpha_{13}\widetilde{F}_3 \\ \vdots\\ \widetilde{x}_7=\alpha_{71}\widetilde{F}_1+\alpha_{72}\widetilde{F}_2+\alpha_{73}\widetilde{F}_3 \end{cases}\end{align*} x 1=α11F 1+α12F 2+α13F 3x 7=α71F 1+α72F 2+α73F 3
求得因子载荷等估计。

最终,通过表格,可以看出,得到了3个因子,第一个因子是穿住用因子,第二个因子是燃料因子,第3个因子是文化因子。

第(1)问中得到 x 4 , x 5 x_4,x_5 x4,x5 是一类变量,这里得到 x 2 , x 4 , x 5 x_2,x_4,x_5 x2,x4,x5 是一类变量,略有差异。

3.程序

求解的MATLAB程序如下:

clc, clear 

% 原始数据,包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 数据标准化
standardizedData = zscore(originalData);

% 计算相关性矩阵
correlationMatrix = corrcoef(standardizedData);

% 使用主成分分析方法对相关性矩阵进行处理,得到特征向量、特征值和贡献率
[eigenvectors, eigenvalues, contribution] = pcacov(correlationMatrix);

% 计算累积贡献率
cumulativeContribution = cumsum(contribution);

% 根据特征向量的符号进行调整
adjustedSigns = repmat(sign(sum(eigenvectors)), size(eigenvectors, 1), 1);
adjustedEigenvectors = eigenvectors .* adjustedSigns;

% 根据特征值进行缩放
scaledFactors = repmat(sqrt(eigenvalues)', size(adjustedEigenvectors, 1), 1);
scaledEigenvectors = adjustedEigenvectors .* scaledFactors;

% 计算贡献率
contribution1 = sum(scaledEigenvectors.^2);

% 选择的因子数量
factorNum = 3;

% 根据选择的因子数量得到对应的因子
selectedFactors = scaledEigenvectors(:, [1:factorNum]);

% 使用方差最大法进行因子旋转
[rotatedFactors, factorMatrix] = rotatefactors(selectedFactors, 'method', 'varimax')

% 合并旋转后的因子和其他因子
mergedFactors = [rotatedFactors, scaledEigenvectors(:, [factorNum + 1:end])];

% 计算因子载荷量
factorLoads = sum(rotatedFactors.^2, 2)

% 计算贡献率
contribution2 = sum(mergedFactors.^2)

% 计算每个因子的贡献率
contributionRate = contribution2(1:factorNum) / sum(contribution2);

% 计算因子得分系数矩阵
factorScoreCoefficients = inv(correlationMatrix) * rotatedFactors;

4.结果

image-20231213134123724

求得因子载荷等估计如下表所示。

image-20231213134131196

可以看出,得到了3个因子,第一个因子是穿住用因子,第二个因子是燃料因子,第3个因子是文化因子。

第(1)问中得到 x 4 , x 5 x_4,x_5 x4,x5 是一类变量,这里得到 x 2 , x 4 , x 5 x_2,x_4,x_5 x2,x4,x5 是一类变量,略有差异。

习题10.6(3)

1. 题目要求

同上。

2.解题过程——聚类分析

解:

首先计算变量间的相关系数。用两变量 x j x_j xj x k x_k xk的相关系数作为它们的相似性度量,即 x j x_j xj x k x_k xk的相似系数为
r j k = ∑ i = 1 16 ( a i j − μ j ) ( a i k − μ k ) [ ∑ i = 1 16 ( a i j − μ j ) 2 ∑ i = 1 16 ( a i k − μ k ) 2 ] 1 / 2 , j , k = 1 , … , 6. r_{jk} = \frac{\sum_{i=1}^{16}(a_{ij}-\mu_{j})(a_{ik}-\mu_k)} {[\sum_{i=1}^{16}(a_{ij}-\mu_{j})^2\sum_{i=1}^{16}(a_{ik}-\mu_k)^2]^{1/2}},j,k=1,\dots,6. rjk=[i=116(aijμj)2i=116(aikμk)2]1/2i=116(aijμj)(aikμk),j,k=1,,6.
然后计算6个变量两两之间的距离,构造距离矩阵。

接着使用最短距离法来测量类与类之间的距离,记类 G p G_{p} Gp G q G_{q} Gq之间的距离:
D ( G p , G q ) = min ⁡ i ∈ G p , k ∈ G q d i k . D(G_p,G_q) = \min_{i\in G_p,k\in G_q }{d_{ik}}. D(Gp,Gq)=iGp,kGqmindik.
变量聚类的结果是变量 x 3 x_3 x3自成一类,其他变量为一类。画出的变量聚类图如下图所示。

image-20231213134144177

最后进行样本点聚类的 Q \mathbf{Q} Q型聚类分析。

计算16个样本点之间的两两马氏距离。

类与类间相似性度量。

画聚类图,并对样本点进行分类。

样本点的聚类结果如下图所示。通过聚类图,可以把地区分成4类,北京自成一类,吉林自成一类,上海自成一类,其他地区为一类。

image-20231213134151846

3.程序

求解的MATLAB程序如下:R型聚类

clc, clear 

% 原始数据,包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 计算相关性矩阵
correlationMatrix = corrcoef(originalData);

% 计算距离矩阵
distanceMatrix = 1 - abs(correlationMatrix);
distanceMatrix = tril(distanceMatrix);

% 将距离矩阵转为一维向量
distanceVector = nonzeros(distanceMatrix);
distanceVector = distanceVector';

% 使用层次聚类算法进行聚类
linkageCluster = linkage(distanceVector);

% 选择最大聚类数量为2,得到每个样本的类别
clusterLabels = cluster(linkageCluster, 'maxclust', 2);

% 找到属于第一类的样本
index1 = find(clusterLabels == 1); 
index1 = index1'

% 找到属于第二类的样本
index2 = find(clusterLabels == 2); 
index2 = index2'

% 生成树状图
h = dendrogram(linkageCluster);

% 设置树状图的颜色和线条宽度
set(h, 'Color', 'k', 'LineWidth', 1.3)

求解的MATLAB程序如下:Q型聚类

clc, clear 

% 原始数据,包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 计算原始数据的协方差
covarianceMatrix = cov(originalData);

% 初始化距离矩阵
distanceMatrix = zeros(size(originalData, 1));

% 计算Q型距离
for j = 1:15
    for i = j+1:16
        distanceMatrix(i,j) = sqrt((originalData(i,:) - originalData(j,:)) * inv(covarianceMatrix) * (originalData(i,:) - originalData(j,:))');
    end
end

% 将距离矩阵转为一维向量
distanceVector = nonzeros(distanceMatrix);
distanceVector = distanceVector';

% 使用层次聚类算法进行聚类
linkageCluster = linkage(distanceVector);

% 生成树状图
dendro = dendrogram(linkageCluster);

% 设置树状图的颜色和线条宽度
set(dendro,'Color','k','LineWidth',1.3)

4.结果

image-20231213134202288

image-20231213134208347

变量 x 3 x_3 x3自成一类,其他变量为一类。

北京自成一类,吉林自成一类,上海自成一类,其他地区为一类。

如果这篇文章对你有帮助,欢迎点赞与收藏~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1317900.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Stable-Diffusion|从图片反推prompt的工具:Tagger(五)

stable-diffusion-webui-wd14-tagger 前面几篇: Stable-Diffusion|window10安装GPU版本的 Stable-Diffusion-WebUI遇到的一些问题(一) 【Stable-Diffusion|入门怎么下载与使用civitai网站的模型(二)】 Stable-Diffusi…

PyQt6 QDial旋钮控件

锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计46条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话版…

Linux----文件权限命令

1. chmod命令的介绍 命令说明chmod修改文件权限 chmod修改文件权限有两种方式: 字母法数字法 2. chmod 字母法的使用 角色说明: 角色说明uuser, 表示该文件的所有者ggroup, 表示用户组oother, 表示其他用户aall, 表示所有用户 权限设置说明: 操作符说明增加权限-撤销权…

性能测试之Locust(完整版)

官方文档:Locust说明文档 一、Locust简介 1、定义 Locust是一款易于使用的分布式负载测试工具,完全基于事件,即一个locust节点也可以在一个进程中支持数千并发用户,不使用回调,通过gevent使用轻量级过程&#xff08…

什么软件可以压缩视频大小?超级简单

什么软件可以压缩视频大小?当我们想将视频上传到网上时,有时候会遇到视频因为体积太大而无法上传的问题,这种情况就需要将视频进行压缩了。那什么软件可以压缩视频大小呢?下面小编就来为大家介绍压缩视频的方法,支持批…

SpringBoot+FastJson 优雅的过滤 Response Body

Spring 源码系列 1、Spring 学习之扩展点总结之后置处理器(一) 2、Spring 学习之扩展点总结之后置处理器(二) 3、Spring 学习之扩展点总结之自定义事件(三) 4、Spring 学习之扩展点总结之内置事件&#xf…

项目实战:自动驾驶之方向盘操纵

项目介绍 根据汽车前方摄像头捕捉的画面,控制汽车方向盘转动的方向和角度,这是自动驾驶要解决的核心问题。这个项目主要是通过使用深度神经网络解决一个回归问题。不同于分类、识别场景,回归问题中神经网络输出的是一个连续的值。 通过这个项目的学习,可以将神经网络用于通…

Flink系列之:大状态与 Checkpoint 调优

Flink系列之:大状态与 Checkpoint 调优 一、概述二、监控状态和 Checkpoints三、Checkpoint 调优四、RocksDB 调优五、增量 Checkpoint六、RocksDB 或 JVM 堆中的计时器七、RocksDB 内存调优八、容量规划九、压缩十、Task 本地恢复十一、主要(分布式存储…

PADS9.5 : 原图绘图图纸尺寸下修改

原图绘图图纸尺寸下修改 图页边界线也要修改 如果二者选择不一致: 会出现下图所示情况:

Django和ECharts异步请求示例

前提条件 创建django项目,安装配置过程这里就不讲述了。 后端url http://127.0.0.1:8000/echarts/demo/ view视图函数 from django.http import HttpResponse import jsondef EchartsDemo(request):data {}categories ["衬衫","羊毛衫",&…

基于net6的zmq调试工具

0.前言 最近在做CS架构的上位机控制软件,服务端和客户端是通过zmq进行通讯的,网上现有的工具都是tcp、串口的调试工具,一直没有找到一个合适的zmq调试工具。就使用C#语言开发了这个简易的zmq调试工具,项目地址ZmqDebuggerTool。 …

这一篇就够了!全套SpringBoot教程02

SpringBoot运维实用篇 基础篇发布以后,看到了很多小伙伴在网上的留言,也帮助超过100位小伙伴解决了一些遇到的问题,并且已经发现了部分问题具有典型性,预计将有些问题在后面篇章的合适位置添加到本套课程中,作为解决方…

app分发平台哪个好点?手机app应用内测分发平台支持负载均衡的重要性

随着互联网的快速发展,内测分发平台扮演着越来越重要的角色。而在现代应用程序的开发和运营过程中,负载均衡技术是不可或缺的一部分。内测分发平台支持负载均衡对于提高系统的稳定性、可靠性和性能至关重要。那么什么是负载均衡又有哪些重要性。 图片来源…

FPGA设计时序约束十二、Set_Clock_Sense

目录 一、序言 二、Set Clock Sense 2.1 基本概念 2.2 设置界面 2.3 命令语法 2.4 命令示例 三、工程示例 3.1 工程代码 3.2 无set_clock_sense 3.3 设置set_clock_sense 四、参考资料 一、序言 本章将介绍Set_Clock_Sense约束,在介绍约束之前&#xff0…

【上海大学数字逻辑实验报告】七、中规模元件及综合设计

一、实验目的 掌握中规模时序元件的测试。学会在Quartus II上设计序列发生器。 二、实验原理 74LS161是四位可预置数二进制加计数器,采用16引脚双列直插式封装的中规模集成电路,其外形如下图所示: 其各引脚功能为: 异步复位输…

cmd命令bat脚本隐藏执行窗口

家里一直都有远程开3389的需要,一直使用的是frp. 最近发现总是经常掉线。也不清楚原因,后调查出来原来是由于 我命令行窗口一般启动的比较多,有时候就会去点一下(选择复制内容),如下: 有时候…

解决:Invalid bound statement (not found): com.XXXXX.UserMapper.countUser

问题:Invalid bound statement (not found): com.XXXXX.UserMapper.countUser 原因:mapper.java和mapper.xml映射不上 解决方法: 1、在application.properties全局配置文件中没有加上映射mapper文件的配置,mapper为resources下的文件&…

可以给网站任意位置添加4个区块源码

在网站里添加html区块把html里的代码复制进去,然后把3、4、5行的CSS和JS修改成网站对应目录就行了

十七、如何将MapReduce程序提交到YARN运行

1、启动某个节点的某一个用户 hadoopnode1:~$ jps 13025 Jps hadoopnode1:~$ yarn --daemon start resourcemanager hadoopnode1:~$ jps 13170 ResourceManager 13253 Jps hadoopnode1:~$ yarn --daemon start nodemanager hadoopnode1:~$ jps 13170 ResourceManager 15062 Jp…

MATLAB2022安装下载教程

安装包需从夸克网盘自取: 链接:https://pan.quark.cn/s/373ffc9213a1 提取码:N7PW 1.将安装包解压 2.以管理员的身份运行文件夹中的setup文件 3.点击高级选项--->我有文件安装密钥 4. 选择【是】,进入下一步 5.输入密钥 0532…