【23-24 秋学期】NNDL 作业11 LSTM

news2024/7/6 17:48:46

目录

习题6-4 推导LSTM网络中参数的梯度, 并分析其避免梯度消失的效果

习题6-3P 编程实现下图LSTM运行过程

(一)numpy实现 

(二)使用nn.LSTMCell实现

(三) 使用nn.LSTM实现

总结

(一)推荐

 (二)关于LSTM的有关推导

(三)有关LSTM的代码


参考【【23-24 秋学期】NNDL 作业11 LSTM-CSDN博客

习题6-4 推导LSTM网络中参数的梯度, 并分析其避免梯度消失的效果

在我的上一篇博客【【23-24 秋学期】NNDL 作业10 BPTT-CSDN博客】中:

可以看到对于梯度爆炸/消失的推导,其中关键部分就在于递归梯度:\frac{\partial h_{t}}{\partial h_{t-1}}这一部分。

对于求解LSTM网络中的梯度消失也同理-----关键部分也就是内部状态递归梯度\frac{\partial C_{t}}{\partial C_{t-1}} 的变化。

先求解一下这个\frac{\partial C_{t}}{\partial C_{t-1}} 如下:

 然后假设损失为E,与上上图求解类似,如下:

参考【LSTM 如何避免梯度消失问题 - 知乎 (zhihu.com)】 这个作者的那个参考网址我点不开,看不了更原始的。

习题6-3P 编程实现下图LSTM运行过程

(一)numpy实现 

简单分析一下,这个LSTM的运行过程:主要包括三个门,加一个输入,中间层,以及输出层。

输入门的作用是:是否要保存输入结果

遗忘门的作用是:是否要把得到的输入结果存到延迟器中去,也就是隐藏层中

输出门的作用是是否把隐藏层的结果输出

需要强调的是,1)输入这一块也是有一个激活的,但是没使用,隐藏层向输出也是,所以我在实现的时候就没有写这一块激活。

2)对于中间隐藏层而言,他就是一个延迟器,所以当遗忘门为1时,它就会累加输入;为0时会清零。

3)对于激活函数sigmoid,它最后的结果类似一个概率,是处于【0,1】之间的一个数,但是由于这道题中最开始的要求,所以我在实现激活函数时,使用np.round(),把结果>0.5作为1输出,结果<0.5的作为0输出,这是特殊情况。

代码如下:

import numpy as np

# x=[x1,x2,x3,bias]
x = [[1, 0, 0, 1], [3, 1, 0, 1], [2, 0, 0, 1], [4, 1, 0, 1], [2, 0, 0, 1], [1, 0, 1, 1], [3, -1, 0, 1], [6, 1, 0, 1], [1, 0, 1, 1]]
# input
input_w = [1, 0, 0, 0]
# 输入门
inputGate_w = [0, 100, 0, -10]
# 遗忘门
forgetGate_w = [0, 100, 0, 10]
# 输出门
outputGate_w = [0, 0, 100, -10]

# 激活
def sigmoid(x):
    return np.round(1 / (1 + np.exp(-x)))

# 延时器
hidden = []
y = []
temp = 0.0

for input in x:
    hidden.append(temp)
    # 输入与与对应权值相乘再相加
    temp_input = np.sum(np.multiply(input, input_w))
    # 输入门【得 1 or 得 0】
    temp_inputGate = sigmoid(np.sum(np.multiply(input, inputGate_w)))
    # 遗忘门
    temp_forgetGate = sigmoid(np.sum(np.multiply(input, forgetGate_w)))
    # 延时器
    temp = temp_input * temp_inputGate + temp * temp_forgetGate
    # 输出门
    temp_outputGate = sigmoid(np.sum(np.multiply(input, outputGate_w)))
    # 输出
    temp_y = temp * temp_outputGate
    y.append(temp_y)

print("延时器:", hidden)
print("输出y: ", y)

得到的结果为:

我就止步到此了。

参考了我们班学霸博客【指路:DL Homework 11-CSDN博客

 发现他对于输入和输出的激活函数有研究,在他博客里提到:

课程指路【 李宏毅手撕LSTM_哔哩哔哩_bilibili

我自己的理解就是:在LSTM的模型中,规定了输入输出状态的激活函数 是tanh函数,与我们实现的代码有一些区别。并且nn.LSTM的内部激活函数,没办法修改,所以仿照学霸的,写了一个检验版【也就是加上tanh版本的】

代码如下:

import numpy as np

# x=[x1,x2,x3,bias]
x = [[1, 0, 0, 1], [3, 1, 0, 1], [2, 0, 0, 1], [4, 1, 0, 1], [2, 0, 0, 1], [1, 0, 1, 1], [3, -1, 0, 1], [6, 1, 0, 1], [1, 0, 1, 1]]
# input
input_w = [1, 0, 0, 0]
# 输入门
inputGate_w = [0, 100, 0, -10]
# 遗忘门
forgetGate_w = [0, 100, 0, 10]
# 输出门
outputGate_w = [0, 0, 100, -10]

# 激活
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 延时器
hidden = []
y = []
temp = 0

for input in x:
    hidden.append(temp)
    # 输入与与对应权值相乘再相加
    #加tanh激活
    temp_input = np.tanh(np.sum(np.multiply(input, input_w)))
    # 输入门【得 1 or 得 0】
    temp_inputGate = sigmoid(np.sum(np.multiply(input, inputGate_w)))
    # 遗忘门
    temp_forgetGate = sigmoid(np.sum(np.multiply(input, forgetGate_w)))
    # 延时器
    #加tanh激活
    temp = np.tanh(temp_input * temp_inputGate + temp * temp_forgetGate)
    # 输出门
    temp_outputGate = sigmoid(np.sum(np.multiply(input, outputGate_w)))
    # 输出
    temp_y = temp * temp_outputGate
    y.append(temp_y)

rounded_hidden = [round(x) for x in hidden]
print("检验版延时器:", rounded_hidden)

rounded_y = [round(x) for x in y]
print("检验版输出y: ", rounded_y)

其中按照下图:

将tanh函数加到输入以及输出之前。 

得到输出为:

 

(二)使用nn.LSTMCell实现

参考【PyTorch - torch.nn.LSTMCell (runebook.dev)】【汉语版,感觉比网页英转汉好用多了】

 可知我们实现的各个值为:

input_size=4

hidden_size=1

偏差bias=False

细胞状态cx=(1,hidden_size)#因为每次运算都是输入的一个批次

同理隐藏状态=(1,hidden_size)

import torch
import torch.nn as nn
#x 维度需要变换,因为LSTMcell接收的是(time_steps,batch_size,input_size)
x = torch.tensor([[1, 0, 0, 1],[3, 1, 0, 1],[2, 0, 0, 1], [4, 1, 0, 1],[2, 0, 0, 1],[1, 0, 1, 1], [3, -1, 0, 1],[6, 1, 0, 1],[1, 0, 1, 1]], dtype=torch.float)
x = x.unsqueeze(1)
#权重
input_w = [1, 0, 0, 0]# input
inputGate_w = [0, 100, 0, -10]# 输入门
forgetGate_w = [0, 100, 0, 10]# 遗忘门
outputGate_w = [0, 0, 100, -10]# 输出门
#输入形状每次一组,一组是【x1,x2,x3,bias】
input_size=4
hidden_size=1
#定义LSTM
cell=nn.LSTMCell(input_size=input_size,hidden_size=hidden_size,bias=False)
#输入隐藏权重,形状为 (4*hidden_size, input_size)
cell.weight_ih.data = torch.tensor([forgetGate_w, inputGate_w, input_w, outputGate_w], dtype=torch.float)
#隐藏权重,形状为 (4*hidden_size, hidden_size)
cell.weight_hh.data=torch.zeros([4*hidden_size,hidden_size])

#hx 和 cx 的初始值都需要初始化为全零张量,表示没有历史信息。
hx=torch.zeros(1,hidden_size)#hx 表示隐藏状态
cx=torch.zeros(1,hidden_size)#cx 表示细胞状态
outputs=[]
for i in range(len(x)):
    #这里没有区分c0,n0和c1,h1:因为使用了递归,也就是这次的输出是下次的输入
    hx, cx = cell(x[i], (hx, cx))
    outputs.append(hx.detach().numpy()[0][0])
#约数
outputs_rounded = [round(x) for x in outputs]
print("使用nn.LSTMCell的输出为:",outputs_rounded)

得到输出为:

(三) 使用nn.LSTM实现

参考【PyTorch - torch.nn.LSTM (runebook.dev)

 与Cell不同的是隐藏状态和细胞状态,其中多加了一个有关序列长度的维度。

代码如下:

import torch
import torch.nn as nn

#x 维度需要变换,因为LSTMcell接收的是(time_steps,batch_size,input_size)
x = torch.tensor([[1, 0, 0, 1],[3, 1, 0, 1],[2, 0, 0, 1], [4, 1, 0, 1],[2, 0, 0, 1],[1, 0, 1, 1], [3, -1, 0, 1],[6, 1, 0, 1],[1, 0, 1, 1]], dtype=torch.float)
x = x.unsqueeze(1)
#权重
input_w = [1, 0, 0, 0]# input
inputGate_w = [0, 100, 0, -10]# 输入门
forgetGate_w = [0, 100, 0, 10]# 遗忘门
outputGate_w = [0, 0, 100, -10]# 输出门
#输入形状每次一组,一组是【x1,x2,x3,bias】
input_size=4
hidden_size=1
#定义LSTM模型
lstm=nn.LSTM(input_size=input_size,hidden_size=hidden_size,bias=False)
#设置LSTM的权重矩阵
#输入隐藏权重,形状为 (4*hidden_size, input_size)
lstm.weight_ih_l0.data = torch.tensor([forgetGate_w, inputGate_w, input_w, outputGate_w], dtype=torch.float)
#隐藏权重,形状为 (4*hidden_size, hidden_size)
lstm.weight_hh_l0.data=torch.zeros([4*hidden_size,hidden_size])
# 初始化隐藏状态和记忆状态
hx = torch.zeros(1, 1, hidden_size)
cx = torch.zeros(1, 1, hidden_size)

# 前向传播
outputs, (hx, cx) = lstm(x, (hx, cx))
#所有维度值为 1 的维度都删除
outputs = outputs.squeeze().tolist()

#约数
outputs_rounded = [round(x) for x in outputs]
print("使用nn.LSTM计算的结果为:",outputs_rounded)

结果为:

总结

(一)推荐

首先是给大家推荐一下课程,有老师上课讲的下边这种动图:

然后我在推导有关Ct的递归梯度时,也是参考了这个视频,博主【苏坡爱豆的笑容】讲的很清楚!!!

 【清晰图解LSTM、BPTT、RNN的梯度消失问题】

 还有上个博客听的那个视频【也有关于LSTM推导的内容】:【循环神经网络讲解|随时间反向传播推导(BPTT)|RNN梯度爆炸和梯度消失的原因|LSTM及GRU(解决RNN中的梯度爆炸和梯度消失)-跟李沐老师动手学深度学习】

都非常nice!

还有一篇知乎的文章解释有关避免梯度消失的也特别好!地址如下:LSTM 如何避免梯度消失问题 - 知乎 (zhihu.com)

然后在看了博客:DL Homework 11-CSDN博客 后,感觉可以推荐一下关于pytorch的汉化版【我读英语头昏脑胀,适合不喜欢学英语的同学,指路:PyTorch 1.8 简体中文 (runebook.dev)】

 (二)关于LSTM的有关推导

这个与上一个作业关联挺大的,很类似,都是在递归推导。可以发现,这个模型中减少梯度消失现象的很重要的一个点就是对于门控单元【遗忘门】的把控。可以及时的缓解梯度消失。

(三)有关LSTM的代码

第一个numpy能写出来,但是关于输出输出位置的激活函数没有多想,参考了学霸的代码后发现他研究了关于这一部分,学到了很多---也就是有激活tanh函数只是写的例子里边把激活函数换成了一个输入几输出几的这样一个激活而已【我自己觉得跟去掉了激活没什么区别】

在pytorch默认的模型里是tanh激活函数。

自己在网上搜关于使用LSTM相关模型时写不出来,学会使用现成的工具是一种能力,然后这个LSTM模型好像没有手写过,我还是不太会内部结构【下几个实验有这个内容,我好好+认真写】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1317614.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PMI相关证书的获取步骤及注意内容

近几年很多行业的从业人员都在考取PMI项目管理相关证书&#xff0c;可在中国大陆地区参加考试的认证主要有&#xff1a;PMP, PgMP, PMI-RMP, PMI-ACP, PMI-PBA, CAPM。PfMP, PMI-SP尚未在中国大陆地区开放考试。 现整理该类证书的相关获取步骤及注意内容 一、证书获取步骤 S…

动态规划(Dynamic Programming)

动态规划&#xff08;Dynamic Programming&#xff09;&#xff1a;是运筹学的一种最优化方法&#xff0c;只不过在计算机问题上应用比较多 DP常见步骤&#xff1a; 暴力递归/穷举记忆化搜索&#xff08;傻缓存 递归&#xff09;,使用备忘录/ DP Table 来优化穷举过程严格表结…

锁--07_2---- index merge(索引合并)引起的死锁

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 案例分析生产背景死锁日志表结构执行计划 EXPLAN为什么会用 index_merge&#xff08;索引合并&#xff09;为什么用了 index_merge就死锁了解决方案注&#xff1a;M…

SQL基础:操作环境搭建

在上一节中&#xff0c;我们简单讲述了数据库和SQL的基本概念。 本节我们讲述一下环境搭建&#xff0c;为下一节讲表的基本操作做下铺垫。 环境搭建 具体到操作&#xff0c;我们就要准备一些环境了。如果不进行练习&#xff0c;我们学习的知识将很快被遗忘。 MySQL安装&…

如何使用Lychee结合内网穿透搭建本地私人图床网站并实现远程访问

文章目录 1.前言2. Lychee网站搭建2.1. Lychee下载和安装2.2 Lychee网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 图床作为图片集中存放的服务网站&#xff0c;可以看做是云存储的一部分&#xff0c;既可…

四舍五入浮点数

1.题目如下&#xff1a; 2.方法一&#xff1a; 直接取出小数部分第一位来判断。 1. 先乘以10。 2. 强制类型转换为整型&#xff0c;去掉小数部分。 3. 再模10&#xff0c;相当于取出原数的小数第一位。 代码实现&#xff1a; int way1(double n) {int a (int)(n * 10);int b…

kafka学习笔记--Kafka副本

本文内容来自尚硅谷B站公开教学视频&#xff0c;仅做个人总结、学习、复习使用&#xff0c;任何对此文章的引用&#xff0c;应当说明源出处为尚硅谷&#xff0c;不得用于商业用途。 如有侵权、联系速删 视频教程链接&#xff1a;【尚硅谷】Kafka3.x教程&#xff08;从入门到调优…

一些关于fMRI脑数据的预处理工具

一些关于fMRI脑数据的预处理工具 前言概述SPM12工具箱FSL工具箱FreeSurfer工具箱BrainNet Viewer工具箱circularGraph工具箱Nipype集成框架fMRIPrep集成框架参考文献 前言 March 25, 2022 这里是关于fMRI脑数据的预处理工具的相关调研 主要是关于数据的预处理&#xff0c;数据…

万兆网络之屏蔽线序接法(中)

在介绍优质网线选购之前&#xff0c;先简单介绍一下水晶头 1毛钱一颗跟1元一颗的水晶头&#xff0c;往往是金手指厚度差别&#xff0c;你可以想象压制的时候可能会有什么情况 另外&#xff0c;一些3元一颗的镀金水晶头会有15U、30U之类的是电镀厚度单位&#xff0c;数值越大镀…

【数据挖掘】国科大苏桂平老师数据库新技术课程作业 —— 第四次作业

云数据库研究 云计算与云数据库背景 云计算&#xff08;cloud computing&#xff09;是 IT 技术发展的最新趋势&#xff0c;正受到业界和学术界的广泛关注。云计算是在分布式处理、并行处理和网格计算等技术的基础上发展起来的&#xff0c;是一种新兴的共享基础架构的方法。它…

java内置的数据结构

Java语言提供了许多内置的数据结构&#xff0c;包括&#xff1a; 1. 数组&#xff08;Array&#xff09;&#xff1a;数组是最基本的数据结构之一&#xff0c;它是一个有序的元素集合&#xff0c;每个元素都有一个对应的索引。在Java中&#xff0c;数组可以通过声明和初始化来创…

2023年金属非金属矿山(地下矿山)安全管理人员证模拟考试题库及金属非金属矿山(地下矿山)安全管理人员理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年金属非金属矿山&#xff08;地下矿山&#xff09;安全管理人员证模拟考试题库及金属非金属矿山&#xff08;地下矿山&#xff09;安全管理人员理论考试试题是由安全生产模拟考试一点通提供&#xff0c;金属非金…

《软件方法(下)》第8章2023版8.1 分析工作流概述

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 第8章 分析 之 分析类图——知识篇 墙上挂了根长藤&#xff0c;长藤上面挂铜铃 《长藤挂铜铃》&#xff1b;词&#xff1a;元庸&#xff0c;曲&#xff1a;梅翁&#xff08;姚敏&…

手麻、腿麻、麻痛…背后竟隐藏7大疾病!多一个人知道,少一个悲剧!

手脚麻木背后的7大病症&#xff1a;骨病、脑梗、肿瘤…… 1、神经问题 上图四只手上橙色的区域代表了麻木感&#xff0c;如果您的手麻集中在无名指和小指的区域&#xff0c;您可以拿一张纸&#xff0c;用五个手指分别试着夹住&#xff0c;检验您的五个手指力量&#xff1b;您还…

软件测试之鲁棒性测试

文章目录 前言一、鲁棒性测试是什么&#xff1f;二、鲁棒性测试的目的三、测试原理3.1 错误数据处理3.2 异常情况处理 前言 Bootloader软件刷写鲁棒性(Robustness)测试是指对Bootloader软件进行连续多次的刷写测试&#xff0c;且一次Fail都没发生&#xff0c;以此验证Bootload…

MySql的增、删、改、查(MySql数据库学习——五)

增&#xff08;数据添加/插入数据&#xff09; 使用 INSERT INTO SQL 语句来插入数据。我们可以通过 mysql> 命令提示窗口中向数据表中插入数据&#xff0c;或者 通过PHP 脚本来插入数据。 sql语句&#xff1a; INSERT INTO table_name ( field1, field2,...fieldN ) …

系列九、事务

一、事务 1.1、概述 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系统提交或者撤销操作请求&#xff0c;即&#xff1a;这些操作要么同时成功&#xff0c;要么同时失败。 例如: 张三给李四转账1000块钱&…

UI自动化Selenium 测试报告BeautifulReport使用及修改

一、BeautifulReport安装 pip安装 pip install BeautifulReport Pycharm中安装 二、原生报告样式 原生报告&#xff0c;因为我使用ddtunittest数据驱动模式&#xff0c;所以Excel中所有参数都会被拼接出来&#xff0c;导致测试方法里面有太多不需要展示的内容&#xff1b; …

IDEA配置一个新项目

git clone xxxxx 下载项目主分支 git checkout xxx 切换到需要开发的分支上 配置maven仓库 在File下的Settings中设置maven仓库 配置maven仓库的文件夹 配置好maven后&#xff0c;项目中会出现一个红色的pom.xml文件&#xff0c;右击文件&#xff0c;点击…&#xff0c;pom…

【计算机组成与体系结构Ⅱ】多处理器部分讨论题目

多处理机课堂讨论 1.并行计算体系结构有哪些? SIMD、MIMD 2.多处理机的存储结构有哪些? 对称式共享存储器结构、分布式共享存储结构 3.什么是多处理机的一致性? 如果对某个数据项的任何读操作均可得到其最新写入的值&#xff0c;则认为这个存储系统是一致的。 4.监听协议的工…