【深度学习】注意力机制(六)

news2024/12/23 17:58:04

本文介绍一些注意力机制的实现,包括MobileVITv1/MobileVITv2/DAT/CrossFormer/MOA。

【深度学习】注意力机制(一)

【深度学习】注意力机制(二)

【深度学习】注意力机制(三)

【深度学习】注意力机制(四)

【深度学习】注意力机制(五)

目录

一、MobileVITv1

二、MobileVITv2

三、DAT(Deformable Attention Transformer)

四、CrossFormer

五、MOA(multi-resolution overlapped attention)


一、MobileVITv1

论文地址:https://arxiv.org/pdf/2110.02178v2.pdf

如下图:

该代码块不能直接使用,有相关依赖,可以参考(代码来源):

import math
from typing import Dict, Optional, Sequence, Tuple, Union

import numpy as np
import torch
from torch import Tensor, nn
from torch.nn import functional as F

from cvnets.layers import ConvLayer2d, get_normalization_layer
from cvnets.modules.base_module import BaseModule
from cvnets.modules.transformer import LinearAttnFFN, TransformerEncoder


class MobileViTBlock(BaseModule):
    """
    This class defines the `MobileViT block <https://arxiv.org/abs/2110.02178?context=cs.LG>`_

    Args:
        opts: command line arguments
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H, W)`
        transformer_dim (int): Input dimension to the transformer unit
        ffn_dim (int): Dimension of the FFN block
        n_transformer_blocks (Optional[int]): Number of transformer blocks. Default: 2
        head_dim (Optional[int]): Head dimension in the multi-head attention. Default: 32
        attn_dropout (Optional[float]): Dropout in multi-head attention. Default: 0.0
        dropout (Optional[float]): Dropout rate. Default: 0.0
        ffn_dropout (Optional[float]): Dropout between FFN layers in transformer. Default: 0.0
        patch_h (Optional[int]): Patch height for unfolding operation. Default: 8
        patch_w (Optional[int]): Patch width for unfolding operation. Default: 8
        transformer_norm_layer (Optional[str]): Normalization layer in the transformer block. Default: layer_norm
        conv_ksize (Optional[int]): Kernel size to learn local representations in MobileViT block. Default: 3
        dilation (Optional[int]): Dilation rate in convolutions. Default: 1
        no_fusion (Optional[bool]): Do not combine the input and output feature maps. Default: False
    """

    def __init__(
        self,
        opts,
        in_channels: int,
        transformer_dim: int,
        ffn_dim: int,
        n_transformer_blocks: Optional[int] = 2,
        head_dim: Optional[int] = 32,
        attn_dropout: Optional[float] = 0.0,
        dropout: Optional[int] = 0.0,
        ffn_dropout: Optional[int] = 0.0,
        patch_h: Optional[int] = 8,
        patch_w: Optional[int] = 8,
        transformer_norm_layer: Optional[str] = "layer_norm",
        conv_ksize: Optional[int] = 3,
        dilation: Optional[int] = 1,
        no_fusion: Optional[bool] = False,
        *args,
        **kwargs
    ) -> None:
        conv_3x3_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=conv_ksize,
            stride=1,
            use_norm=True,
            use_act=True,
            dilation=dilation,
        )
        conv_1x1_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=transformer_dim,
            kernel_size=1,
            stride=1,
            use_norm=False,
            use_act=False,
        )

        conv_1x1_out = ConvLayer2d(
            opts=opts,
            in_channels=transformer_dim,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            use_norm=True,
            use_act=True,
        )
        conv_3x3_out = None
        if not no_fusion:
            conv_3x3_out = ConvLayer2d(
                opts=opts,
                in_channels=2 * in_channels,
                out_channels=in_channels,
                kernel_size=conv_ksize,
                stride=1,
                use_norm=True,
                use_act=True,
            )
        super().__init__()
        self.local_rep = nn.Sequential()
        self.local_rep.add_module(name="conv_3x3", module=conv_3x3_in)
        self.local_rep.add_module(name="conv_1x1", module=conv_1x1_in)

        assert transformer_dim % head_dim == 0
        num_heads = transformer_dim // head_dim

        global_rep = [
            TransformerEncoder(
                opts=opts,
                embed_dim=transformer_dim,
                ffn_latent_dim=ffn_dim,
                num_heads=num_heads,
                attn_dropout=attn_dropout,
                dropout=dropout,
                ffn_dropout=ffn_dropout,
                transformer_norm_layer=transformer_norm_layer,
            )
            for _ in range(n_transformer_blocks)
        ]
        global_rep.append(
            get_normalization_layer(
                opts=opts,
                norm_type=transformer_norm_layer,
                num_features=transformer_dim,
            )
        )
        self.global_rep = nn.Sequential(*global_rep)

        self.conv_proj = conv_1x1_out

        self.fusion = conv_3x3_out

        self.patch_h = patch_h
        self.patch_w = patch_w
        self.patch_area = self.patch_w * self.patch_h

        self.cnn_in_dim = in_channels
        self.cnn_out_dim = transformer_dim
        self.n_heads = num_heads
        self.ffn_dim = ffn_dim
        self.dropout = dropout
        self.attn_dropout = attn_dropout
        self.ffn_dropout = ffn_dropout
        self.dilation = dilation
        self.n_blocks = n_transformer_blocks
        self.conv_ksize = conv_ksize


    def unfolding(self, feature_map: Tensor) -> Tuple[Tensor, Dict]:
        patch_w, patch_h = self.patch_w, self.patch_h
        patch_area = int(patch_w * patch_h)
        batch_size, in_channels, orig_h, orig_w = feature_map.shape

        new_h = int(math.ceil(orig_h / self.patch_h) * self.patch_h)
        new_w = int(math.ceil(orig_w / self.patch_w) * self.patch_w)

        interpolate = False
        if new_w != orig_w or new_h != orig_h:
            # Note: Padding can be done, but then it needs to be handled in attention function.
            feature_map = F.interpolate(
                feature_map, size=(new_h, new_w), mode="bilinear", align_corners=False
            )
            interpolate = True

        # number of patches along width and height
        num_patch_w = new_w // patch_w  # n_w
        num_patch_h = new_h // patch_h  # n_h
        num_patches = num_patch_h * num_patch_w  # N

        # [B, C, H, W] --> [B * C * n_h, p_h, n_w, p_w]
        reshaped_fm = feature_map.reshape(
            batch_size * in_channels * num_patch_h, patch_h, num_patch_w, patch_w
        )
        # [B * C * n_h, p_h, n_w, p_w] --> [B * C * n_h, n_w, p_h, p_w]
        transposed_fm = reshaped_fm.transpose(1, 2)
        # [B * C * n_h, n_w, p_h, p_w] --> [B, C, N, P] where P = p_h * p_w and N = n_h * n_w
        reshaped_fm = transposed_fm.reshape(
            batch_size, in_channels, num_patches, patch_area
        )
        # [B, C, N, P] --> [B, P, N, C]
        transposed_fm = reshaped_fm.transpose(1, 3)
        # [B, P, N, C] --> [BP, N, C]
        patches = transposed_fm.reshape(batch_size * patch_area, num_patches, -1)

        info_dict = {
            "orig_size": (orig_h, orig_w),
            "batch_size": batch_size,
            "interpolate": interpolate,
            "total_patches": num_patches,
            "num_patches_w": num_patch_w,
            "num_patches_h": num_patch_h,
        }

        return patches, info_dict

    def folding(self, patches: Tensor, info_dict: Dict) -> Tensor:
        n_dim = patches.dim()
        assert n_dim == 3, "Tensor should be of shape BPxNxC. Got: {}".format(
            patches.shape
        )
        # [BP, N, C] --> [B, P, N, C]
        patches = patches.contiguous().view(
            info_dict["batch_size"], self.patch_area, info_dict["total_patches"], -1
        )

        batch_size, pixels, num_patches, channels = patches.size()
        num_patch_h = info_dict["num_patches_h"]
        num_patch_w = info_dict["num_patches_w"]

        # [B, P, N, C] --> [B, C, N, P]
        patches = patches.transpose(1, 3)

        # [B, C, N, P] --> [B*C*n_h, n_w, p_h, p_w]
        feature_map = patches.reshape(
            batch_size * channels * num_patch_h, num_patch_w, self.patch_h, self.patch_w
        )
        # [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w]
        feature_map = feature_map.transpose(1, 2)
        # [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W]
        feature_map = feature_map.reshape(
            batch_size, channels, num_patch_h * self.patch_h, num_patch_w * self.patch_w
        )
        if info_dict["interpolate"]:
            feature_map = F.interpolate(
                feature_map,
                size=info_dict["orig_size"],
                mode="bilinear",
                align_corners=False,
            )
        return feature_map

    def forward_spatial(self, x: Tensor) -> Tensor:
        res = x

        fm = self.local_rep(x)

        # convert feature map to patches
        patches, info_dict = self.unfolding(fm)

        # learn global representations
        for transformer_layer in self.global_rep:
            patches = transformer_layer(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        fm = self.folding(patches=patches, info_dict=info_dict)

        fm = self.conv_proj(fm)

        if self.fusion is not None:
            fm = self.fusion(torch.cat((res, fm), dim=1))
        return fm

    def forward_temporal(
        self, x: Tensor, x_prev: Optional[Tensor] = None
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:

        res = x
        fm = self.local_rep(x)

        # convert feature map to patches
        patches, info_dict = self.unfolding(fm)

        # learn global representations
        for global_layer in self.global_rep:
            if isinstance(global_layer, TransformerEncoder):
                patches = global_layer(x=patches, x_prev=x_prev)
            else:
                patches = global_layer(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        fm = self.folding(patches=patches, info_dict=info_dict)

        fm = self.conv_proj(fm)

        if self.fusion is not None:
            fm = self.fusion(torch.cat((res, fm), dim=1))
        return fm, patches

    def forward(
        self, x: Union[Tensor, Tuple[Tensor]], *args, **kwargs
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        if isinstance(x, Tuple) and len(x) == 2:
            # for spatio-temporal MobileViT
            return self.forward_temporal(x=x[0], x_prev=x[1])
        elif isinstance(x, Tensor):
            # For image data
            return self.forward_spatial(x)
        else:
            raise NotImplementedError

二、MobileVITv2

论文地址:Separable Self-attention for Mobile Vision Transformers

如下图:

代码不可直接使用,可参考代码来源:

class MobileViTBlockv2(BaseModule):
    """
    This class defines the `MobileViTv2 <https://arxiv.org/abs/2206.02680>`_ block

    Args:
        opts: command line arguments
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H, W)`
        attn_unit_dim (int): Input dimension to the attention unit
        ffn_multiplier (int): Expand the input dimensions by this factor in FFN. Default is 2.
        n_attn_blocks (Optional[int]): Number of attention units. Default: 2
        attn_dropout (Optional[float]): Dropout in multi-head attention. Default: 0.0
        dropout (Optional[float]): Dropout rate. Default: 0.0
        ffn_dropout (Optional[float]): Dropout between FFN layers in transformer. Default: 0.0
        patch_h (Optional[int]): Patch height for unfolding operation. Default: 8
        patch_w (Optional[int]): Patch width for unfolding operation. Default: 8
        conv_ksize (Optional[int]): Kernel size to learn local representations in MobileViT block. Default: 3
        dilation (Optional[int]): Dilation rate in convolutions. Default: 1
        attn_norm_layer (Optional[str]): Normalization layer in the attention block. Default: layer_norm_2d
    """

    def __init__(
        self,
        opts,
        in_channels: int,
        attn_unit_dim: int,
        ffn_multiplier: Optional[Union[Sequence[Union[int, float]], int, float]] = 2.0,
        n_attn_blocks: Optional[int] = 2,
        attn_dropout: Optional[float] = 0.0,
        dropout: Optional[float] = 0.0,
        ffn_dropout: Optional[float] = 0.0,
        patch_h: Optional[int] = 8,
        patch_w: Optional[int] = 8,
        conv_ksize: Optional[int] = 3,
        dilation: Optional[int] = 1,
        attn_norm_layer: Optional[str] = "layer_norm_2d",
        *args,
        **kwargs
    ) -> None:
        cnn_out_dim = attn_unit_dim

        conv_3x3_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=conv_ksize,
            stride=1,
            use_norm=True,
            use_act=True,
            dilation=dilation,
            groups=in_channels,
        )
        conv_1x1_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=cnn_out_dim,
            kernel_size=1,
            stride=1,
            use_norm=False,
            use_act=False,
        )

        super(MobileViTBlockv2, self).__init__()
        self.local_rep = nn.Sequential(conv_3x3_in, conv_1x1_in)

        self.global_rep, attn_unit_dim = self._build_attn_layer(
            opts=opts,
            d_model=attn_unit_dim,
            ffn_mult=ffn_multiplier,
            n_layers=n_attn_blocks,
            attn_dropout=attn_dropout,
            dropout=dropout,
            ffn_dropout=ffn_dropout,
            attn_norm_layer=attn_norm_layer,
        )

        self.conv_proj = ConvLayer2d(
            opts=opts,
            in_channels=cnn_out_dim,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            use_norm=True,
            use_act=False,
        )

        self.patch_h = patch_h
        self.patch_w = patch_w
        self.patch_area = self.patch_w * self.patch_h

        self.cnn_in_dim = in_channels
        self.cnn_out_dim = cnn_out_dim
        self.transformer_in_dim = attn_unit_dim
        self.dropout = dropout
        self.attn_dropout = attn_dropout
        self.ffn_dropout = ffn_dropout
        self.n_blocks = n_attn_blocks
        self.conv_ksize = conv_ksize
        self.enable_coreml_compatible_fn = getattr(
            opts, "common.enable_coreml_compatible_module", False
        )

        if self.enable_coreml_compatible_fn:
            # we set persistent to false so that these weights are not part of model's state_dict
            self.register_buffer(
                name="unfolding_weights",
                tensor=self._compute_unfolding_weights(),
                persistent=False,
            )

    def _compute_unfolding_weights(self) -> Tensor:
        # [P_h * P_w, P_h * P_w]
        weights = torch.eye(self.patch_h * self.patch_w, dtype=torch.float)
        # [P_h * P_w, P_h * P_w] --> [P_h * P_w, 1, P_h, P_w]
        weights = weights.reshape(
            (self.patch_h * self.patch_w, 1, self.patch_h, self.patch_w)
        )
        # [P_h * P_w, 1, P_h, P_w] --> [P_h * P_w * C, 1, P_h, P_w]
        weights = weights.repeat(self.cnn_out_dim, 1, 1, 1)
        return weights

    def _build_attn_layer(
        self,
        opts,
        d_model: int,
        ffn_mult: Union[Sequence, int, float],
        n_layers: int,
        attn_dropout: float,
        dropout: float,
        ffn_dropout: float,
        attn_norm_layer: str,
        *args,
        **kwargs
    ) -> Tuple[nn.Module, int]:

        if isinstance(ffn_mult, Sequence) and len(ffn_mult) == 2:
            ffn_dims = (
                np.linspace(ffn_mult[0], ffn_mult[1], n_layers, dtype=float) * d_model
            )
        elif isinstance(ffn_mult, Sequence) and len(ffn_mult) == 1:
            ffn_dims = [ffn_mult[0] * d_model] * n_layers
        elif isinstance(ffn_mult, (int, float)):
            ffn_dims = [ffn_mult * d_model] * n_layers
        else:
            raise NotImplementedError

        # ensure that dims are multiple of 16
        ffn_dims = [int((d // 16) * 16) for d in ffn_dims]

        global_rep = [
            LinearAttnFFN(
                opts=opts,
                embed_dim=d_model,
                ffn_latent_dim=ffn_dims[block_idx],
                attn_dropout=attn_dropout,
                dropout=dropout,
                ffn_dropout=ffn_dropout,
                norm_layer=attn_norm_layer,
            )
            for block_idx in range(n_layers)
        ]
        global_rep.append(
            get_normalization_layer(
                opts=opts, norm_type=attn_norm_layer, num_features=d_model
            )
        )

        return nn.Sequential(*global_rep), d_model

    def __repr__(self) -> str:
        repr_str = "{}(".format(self.__class__.__name__)

        repr_str += "\n\t Local representations"
        if isinstance(self.local_rep, nn.Sequential):
            for m in self.local_rep:
                repr_str += "\n\t\t {}".format(m)
        else:
            repr_str += "\n\t\t {}".format(self.local_rep)

        repr_str += "\n\t Global representations with patch size of {}x{}".format(
            self.patch_h,
            self.patch_w,
        )
        if isinstance(self.global_rep, nn.Sequential):
            for m in self.global_rep:
                repr_str += "\n\t\t {}".format(m)
        else:
            repr_str += "\n\t\t {}".format(self.global_rep)

        if isinstance(self.conv_proj, nn.Sequential):
            for m in self.conv_proj:
                repr_str += "\n\t\t {}".format(m)
        else:
            repr_str += "\n\t\t {}".format(self.conv_proj)

        repr_str += "\n)"
        return repr_str

    def unfolding_pytorch(self, feature_map: Tensor) -> Tuple[Tensor, Tuple[int, int]]:

        batch_size, in_channels, img_h, img_w = feature_map.shape

        # [B, C, H, W] --> [B, C, P, N]
        patches = F.unfold(
            feature_map,
            kernel_size=(self.patch_h, self.patch_w),
            stride=(self.patch_h, self.patch_w),
        )
        patches = patches.reshape(
            batch_size, in_channels, self.patch_h * self.patch_w, -1
        )

        return patches, (img_h, img_w)

    def folding_pytorch(self, patches: Tensor, output_size: Tuple[int, int]) -> Tensor:
        batch_size, in_dim, patch_size, n_patches = patches.shape

        # [B, C, P, N]
        patches = patches.reshape(batch_size, in_dim * patch_size, n_patches)

        feature_map = F.fold(
            patches,
            output_size=output_size,
            kernel_size=(self.patch_h, self.patch_w),
            stride=(self.patch_h, self.patch_w),
        )

        return feature_map

    def unfolding_coreml(self, feature_map: Tensor) -> Tuple[Tensor, Tuple[int, int]]:
        # im2col is not implemented in Coreml, so here we hack its implementation using conv2d
        # we compute the weights

        # [B, C, H, W] --> [B, C, P, N]
        batch_size, in_channels, img_h, img_w = feature_map.shape
        #
        patches = F.conv2d(
            feature_map,
            self.unfolding_weights,
            bias=None,
            stride=(self.patch_h, self.patch_w),
            padding=0,
            dilation=1,
            groups=in_channels,
        )
        patches = patches.reshape(
            batch_size, in_channels, self.patch_h * self.patch_w, -1
        )
        return patches, (img_h, img_w)

    def folding_coreml(self, patches: Tensor, output_size: Tuple[int, int]) -> Tensor:
        # col2im is not supported on coreml, so tracing fails
        # We hack folding function via pixel_shuffle to enable coreml tracing
        batch_size, in_dim, patch_size, n_patches = patches.shape

        n_patches_h = output_size[0] // self.patch_h
        n_patches_w = output_size[1] // self.patch_w

        feature_map = patches.reshape(
            batch_size, in_dim * self.patch_h * self.patch_w, n_patches_h, n_patches_w
        )
        assert (
            self.patch_h == self.patch_w
        ), "For Coreml, we need patch_h and patch_w are the same"
        feature_map = F.pixel_shuffle(feature_map, upscale_factor=self.patch_h)
        return feature_map

    def resize_input_if_needed(self, x):
        batch_size, in_channels, orig_h, orig_w = x.shape
        if orig_h % self.patch_h != 0 or orig_w % self.patch_w != 0:
            new_h = int(math.ceil(orig_h / self.patch_h) * self.patch_h)
            new_w = int(math.ceil(orig_w / self.patch_w) * self.patch_w)
            x = F.interpolate(
                x, size=(new_h, new_w), mode="bilinear", align_corners=True
            )
        return x

    def forward_spatial(self, x: Tensor, *args, **kwargs) -> Tensor:
        x = self.resize_input_if_needed(x)

        fm = self.local_rep(x)

        # convert feature map to patches
        if self.enable_coreml_compatible_fn:
            patches, output_size = self.unfolding_coreml(fm)
        else:
            patches, output_size = self.unfolding_pytorch(fm)

        # learn global representations on all patches
        patches = self.global_rep(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        if self.enable_coreml_compatible_fn:
            fm = self.folding_coreml(patches=patches, output_size=output_size)
        else:
            fm = self.folding_pytorch(patches=patches, output_size=output_size)
        fm = self.conv_proj(fm)

        return fm

    def forward_temporal(
        self, x: Tensor, x_prev: Tensor, *args, **kwargs
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        x = self.resize_input_if_needed(x)

        fm = self.local_rep(x)

        # convert feature map to patches
        if self.enable_coreml_compatible_fn:
            patches, output_size = self.unfolding_coreml(fm)
        else:
            patches, output_size = self.unfolding_pytorch(fm)

        # learn global representations
        for global_layer in self.global_rep:
            if isinstance(global_layer, LinearAttnFFN):
                patches = global_layer(x=patches, x_prev=x_prev)
            else:
                patches = global_layer(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        if self.enable_coreml_compatible_fn:
            fm = self.folding_coreml(patches=patches, output_size=output_size)
        else:
            fm = self.folding_pytorch(patches=patches, output_size=output_size)
        fm = self.conv_proj(fm)

        return fm, patches

    def forward(
        self, x: Union[Tensor, Tuple[Tensor]], *args, **kwargs
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        if isinstance(x, Tuple) and len(x) == 2:
            # for spatio-temporal data (e.g., videos)
            return self.forward_temporal(x=x[0], x_prev=x[1])
        elif isinstance(x, Tensor):
            # for image data
            return self.forward_spatial(x)
        else:
            raise NotImplementedError

三、DAT(Deformable Attention Transformer)

论文地址:Vision Transformer with Deformable Attention

如下图:

代码如下(代码来源):

class DAttentionBaseline(nn.Module):

    def __init__(
        self, q_size, kv_size, n_heads, n_head_channels, n_groups,
        attn_drop, proj_drop, stride, 
        offset_range_factor, use_pe, dwc_pe,
        no_off, fixed_pe, ksize, log_cpb
    ):

        super().__init__()
        self.dwc_pe = dwc_pe
        self.n_head_channels = n_head_channels
        self.scale = self.n_head_channels ** -0.5
        self.n_heads = n_heads
        self.q_h, self.q_w = q_size
        # self.kv_h, self.kv_w = kv_size
        self.kv_h, self.kv_w = self.q_h // stride, self.q_w // stride
        self.nc = n_head_channels * n_heads
        self.n_groups = n_groups
        self.n_group_channels = self.nc // self.n_groups
        self.n_group_heads = self.n_heads // self.n_groups
        self.use_pe = use_pe
        self.fixed_pe = fixed_pe
        self.no_off = no_off
        self.offset_range_factor = offset_range_factor
        self.ksize = ksize
        self.log_cpb = log_cpb
        self.stride = stride
        kk = self.ksize
        pad_size = kk // 2 if kk != stride else 0

        self.conv_offset = nn.Sequential(
            nn.Conv2d(self.n_group_channels, self.n_group_channels, kk, stride, pad_size, groups=self.n_group_channels),
            LayerNormProxy(self.n_group_channels),
            nn.GELU(),
            nn.Conv2d(self.n_group_channels, 2, 1, 1, 0, bias=False)
        )
        if self.no_off:
            for m in self.conv_offset.parameters():
                m.requires_grad_(False)

        self.proj_q = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_k = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_v = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_out = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_drop = nn.Dropout(proj_drop, inplace=True)
        self.attn_drop = nn.Dropout(attn_drop, inplace=True)

        if self.use_pe and not self.no_off:
            if self.dwc_pe:
                self.rpe_table = nn.Conv2d(
                    self.nc, self.nc, kernel_size=3, stride=1, padding=1, groups=self.nc)
            elif self.fixed_pe:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * self.q_w, self.kv_h * self.kv_w)
                )
                trunc_normal_(self.rpe_table, std=0.01)
            elif self.log_cpb:
                # Borrowed from Swin-V2
                self.rpe_table = nn.Sequential(
                    nn.Linear(2, 32, bias=True),
                    nn.ReLU(inplace=True),
                    nn.Linear(32, self.n_group_heads, bias=False)
                )
            else:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * 2 - 1, self.q_w * 2 - 1)
                )
                trunc_normal_(self.rpe_table, std=0.01)
        else:
            self.rpe_table = None

    @torch.no_grad()
    def _get_ref_points(self, H_key, W_key, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.linspace(0.5, H_key - 0.5, H_key, dtype=dtype, device=device),
            torch.linspace(0.5, W_key - 0.5, W_key, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W_key - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H_key - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1) # B * g H W 2

        return ref
    
    @torch.no_grad()
    def _get_q_grid(self, H, W, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.arange(0, H, dtype=dtype, device=device),
            torch.arange(0, W, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1) # B * g H W 2

        return ref

    def forward(self, x):

        B, C, H, W = x.size()
        dtype, device = x.dtype, x.device

        q = self.proj_q(x)
        q_off = einops.rearrange(q, 'b (g c) h w -> (b g) c h w', g=self.n_groups, c=self.n_group_channels)
        offset = self.conv_offset(q_off).contiguous()  # B * g 2 Hg Wg
        Hk, Wk = offset.size(2), offset.size(3)
        n_sample = Hk * Wk

        if self.offset_range_factor >= 0 and not self.no_off:
            offset_range = torch.tensor([1.0 / (Hk - 1.0), 1.0 / (Wk - 1.0)], device=device).reshape(1, 2, 1, 1)
            offset = offset.tanh().mul(offset_range).mul(self.offset_range_factor)

        offset = einops.rearrange(offset, 'b p h w -> b h w p')
        reference = self._get_ref_points(Hk, Wk, B, dtype, device)

        if self.no_off:
            offset = offset.fill_(0.0)

        if self.offset_range_factor >= 0:
            pos = offset + reference
        else:
            pos = (offset + reference).clamp(-1., +1.)

        if self.no_off:
            x_sampled = F.avg_pool2d(x, kernel_size=self.stride, stride=self.stride)
            assert x_sampled.size(2) == Hk and x_sampled.size(3) == Wk, f"Size is {x_sampled.size()}"
        else:
            x_sampled = F.grid_sample(
                input=x.reshape(B * self.n_groups, self.n_group_channels, H, W), 
                grid=pos[..., (1, 0)], # y, x -> x, y
                mode='bilinear', align_corners=True) # B * g, Cg, Hg, Wg
                

        x_sampled = x_sampled.reshape(B, C, 1, n_sample)

        q = q.reshape(B * self.n_heads, self.n_head_channels, H * W)
        k = self.proj_k(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)
        v = self.proj_v(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)

        attn = torch.einsum('b c m, b c n -> b m n', q, k) # B * h, HW, Ns
        attn = attn.mul(self.scale)

        if self.use_pe and (not self.no_off):

            if self.dwc_pe:
                residual_lepe = self.rpe_table(q.reshape(B, C, H, W)).reshape(B * self.n_heads, self.n_head_channels, H * W)
            elif self.fixed_pe:
                rpe_table = self.rpe_table
                attn_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                attn = attn + attn_bias.reshape(B * self.n_heads, H * W, n_sample)
            elif self.log_cpb:
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups, n_sample, 2).unsqueeze(1)).mul(4.0) # d_y, d_x [-8, +8]
                displacement = torch.sign(displacement) * torch.log2(torch.abs(displacement) + 1.0) / np.log2(8.0)
                attn_bias = self.rpe_table(displacement) # B * g, H * W, n_sample, h_g
                attn = attn + einops.rearrange(attn_bias, 'b m n h -> (b h) m n', h=self.n_group_heads)
            else:
                rpe_table = self.rpe_table
                rpe_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups, n_sample, 2).unsqueeze(1)).mul(0.5)
                attn_bias = F.grid_sample(
                    input=einops.rearrange(rpe_bias, 'b (g c) h w -> (b g) c h w', c=self.n_group_heads, g=self.n_groups),
                    grid=displacement[..., (1, 0)],
                    mode='bilinear', align_corners=True) # B * g, h_g, HW, Ns

                attn_bias = attn_bias.reshape(B * self.n_heads, H * W, n_sample)
                attn = attn + attn_bias

        attn = F.softmax(attn, dim=2)
        attn = self.attn_drop(attn)

        out = torch.einsum('b m n, b c n -> b c m', attn, v)

        if self.use_pe and self.dwc_pe:
            out = out + residual_lepe
        out = out.reshape(B, C, H, W)

        y = self.proj_drop(self.proj_out(out))

        return y, pos.reshape(B, self.n_groups, Hk, Wk, 2), reference.reshape(B, self.n_groups, Hk, Wk, 2)

四、CrossFormer

该论文有好几个模块论文地址:CROSSFORMER: A VERSATILE VISION TRANSFORMER HINGING ON CROSS-SCALE ATTENTION

SDA、LDA、DPB如下图:

网络结构如下图:

代码如下(代码来源):

import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class DynamicPosBias(nn.Module):
    def __init__(self, dim, num_heads, residual):
        super().__init__()
        self.residual = residual
        self.num_heads = num_heads
        self.pos_dim = dim // 4
        self.pos_proj = nn.Linear(2, self.pos_dim)
        self.pos1 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos2 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim)
        )
        self.pos3 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.num_heads)
        )
    def forward(self, biases):
        if self.residual:
            pos = self.pos_proj(biases) # 2Wh-1 * 2Ww-1, heads
            pos = pos + self.pos1(pos)
            pos = pos + self.pos2(pos)
            pos = self.pos3(pos)
        else:
            pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
        return pos

    def flops(self, N):
        flops = N * 2 * self.pos_dim
        flops += N * self.pos_dim * self.pos_dim
        flops += N * self.pos_dim * self.pos_dim
        flops += N * self.pos_dim * self.num_heads
        return flops

class Attention(nn.Module):
    r""" Multi-head self attention module with dynamic position bias.

    Args:
        dim (int): Number of input channels.
        group_size (tuple[int]): The height and width of the group.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, group_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,
                 position_bias=True):

        super().__init__()
        self.dim = dim
        self.group_size = group_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.position_bias = position_bias

        if position_bias:
            self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
            
            # generate mother-set
            position_bias_h = torch.arange(1 - self.group_size[0], self.group_size[0])
            position_bias_w = torch.arange(1 - self.group_size[1], self.group_size[1])
            biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))  # 2, 2Wh-1, 2W2-1
            biases = biases.flatten(1).transpose(0, 1).float()
            self.register_buffer("biases", biases)

            # get pair-wise relative position index for each token inside the group
            coords_h = torch.arange(self.group_size[0])
            coords_w = torch.arange(self.group_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += self.group_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += self.group_size[1] - 1
            relative_coords[:, :, 0] *= 2 * self.group_size[1] - 1
            relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_groups*B, N, C)
            mask: (0/-inf) mask with shape of (num_groups, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        if self.position_bias:
            pos = self.pos(self.biases) # 2Wh-1 * 2Ww-1, heads
            # select position bias
            relative_position_bias = pos[self.relative_position_index.view(-1)].view(
                self.group_size[0] * self.group_size[1], self.group_size[0] * self.group_size[1], -1)  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, group_size={self.group_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 group with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        if self.position_bias:
            flops += self.pos.flops(N)
        return flops


class CrossFormerBlock(nn.Module):
    r""" CrossFormer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        group_size (int): Group size.
        lsda_flag (int): use SDA or LDA, 0 for SDA and 1 for LDA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, group_size=7, lsda_flag=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_patch_size=1):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.group_size = group_size
        self.lsda_flag = lsda_flag
        self.mlp_ratio = mlp_ratio
        self.num_patch_size = num_patch_size
        if min(self.input_resolution) <= self.group_size:
            # if group size is larger than input resolution, we don't partition groups
            self.lsda_flag = 0
            self.group_size = min(self.input_resolution)

        self.norm1 = norm_layer(dim)

        self.attn = Attention(
            dim, group_size=to_2tuple(self.group_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
            position_bias=True)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        attn_mask = None
        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size %d, %d, %d" % (L, H, W)

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # group embeddings
        G = self.group_size
        if self.lsda_flag == 0: # 0 for SDA
            x = x.reshape(B, H // G, G, W // G, G, C).permute(0, 1, 3, 2, 4, 5)
        else: # 1 for LDA
            x = x.reshape(B, G, H // G, G, W // G, C).permute(0, 2, 4, 1, 3, 5)
        x = x.reshape(B * H * W // G**2, G**2, C)

        # multi-head self-attention
        x = self.attn(x, mask=self.attn_mask)  # nW*B, G*G, C

        # ungroup embeddings
        x = x.reshape(B, H // G, W // G, G, G, C)
        if self.lsda_flag == 0:
            x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, H, W, C)
        else:
            x = x.permute(0, 3, 1, 4, 2, 5).reshape(B, H, W, C)
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"group_size={self.group_size}, lsda_flag={self.lsda_flag}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # LSDA
        nW = H * W / self.group_size / self.group_size
        flops += nW * self.attn.flops(self.group_size * self.group_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm, patch_size=[2], num_input_patch_size=1):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reductions = nn.ModuleList()
        self.patch_size = patch_size
        self.norm = norm_layer(dim)

        for i, ps in enumerate(patch_size):
            if i == len(patch_size) - 1:
                out_dim = 2 * dim // 2 ** i
            else:
                out_dim = 2 * dim // 2 ** (i + 1)
            stride = 2
            padding = (ps - stride) // 2
            self.reductions.append(nn.Conv2d(dim, out_dim, kernel_size=ps, 
                                                stride=stride, padding=padding))

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = self.norm(x)
        x = x.view(B, H, W, C).permute(0, 3, 1, 2)

        xs = []
        for i in range(len(self.reductions)):
            tmp_x = self.reductions[i](x).flatten(2).transpose(1, 2)
            xs.append(tmp_x)
        x = torch.cat(xs, dim=2)
        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        for i, ps in enumerate(self.patch_size):
            if i == len(self.patch_size) - 1:
                out_dim = 2 * self.dim // 2 ** i
            else:
                out_dim = 2 * self.dim // 2 ** (i + 1)
            flops += (H // 2) * (W // 2) * ps * ps * out_dim * self.dim
        return flops


class Stage(nn.Module):
    """ CrossFormer blocks for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        group_size (int): variable G in the paper, one group has GxG embeddings
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, group_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
                 patch_size_end=[4], num_patch_size=None):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList()
        for i in range(depth):
            lsda_flag = 0 if (i % 2 == 0) else 1
            self.blocks.append(CrossFormerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, group_size=group_size,
                                 lsda_flag=lsda_flag,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer,
                                 num_patch_size=num_patch_size))

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer, 
                                         patch_size=patch_size_end, num_input_patch_size=num_patch_size)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: [4].
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        # patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[0] // patch_size[0]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.projs = nn.ModuleList()
        for i, ps in enumerate(patch_size):
            if i == len(patch_size) - 1:
                dim = embed_dim // 2 ** i
            else:
                dim = embed_dim // 2 ** (i + 1)
            stride = patch_size[0]
            padding = (ps - patch_size[0]) // 2
            self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, padding=padding))
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        xs = []
        for i in range(len(self.projs)):
            tx = self.projs[i](x).flatten(2).transpose(1, 2)
            xs.append(tx)  # B Ph*Pw C
        x = torch.cat(xs, dim=2)
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = 0
        for i, ps in enumerate(self.patch_size):
            if i == len(self.patch_size) - 1:
                dim = self.embed_dim // 2 ** i
            else:
                dim = self.embed_dim // 2 ** (i + 1)
            flops += Ho * Wo * dim * self.in_chans * (self.patch_size[i] * self.patch_size[i])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops


class CrossFormer(nn.Module):
    r""" CrossFormer
        A PyTorch impl of : `CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention`  -

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each stage.
        num_heads (tuple(int)): Number of attention heads in different layers.
        group_size (int): Group size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, img_size=224, patch_size=[4], in_chans=3, num_classes=1000,
                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
                 group_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, merge_size=[[2], [2], [2]], **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()

        num_patch_sizes = [len(patch_size)] + [len(m) for m in merge_size]
        for i_layer in range(self.num_layers):
            patch_size_end = merge_size[i_layer] if i_layer < self.num_layers - 1 else None
            num_patch_size = num_patch_sizes[i_layer]
            layer = Stage(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               group_size=group_size[i_layer],
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer,
                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                               use_checkpoint=use_checkpoint,
                               patch_size_end=patch_size_end,
                               num_patch_size=num_patch_size)
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x)

        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

五、MOA(multi-resolution overlapped attention)

论文地址:Aggregating Global Features into Local Vision Transformer

如下图:

代码如下(代码来源):


# --------------------------------------------------------
# Adopted from Swin Transformer
# Modified by Krushi Patel
# --------------------------------------------------------

import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from einops.layers.torch import Rearrange, Reduce

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows





def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.query_size = self.window_size
        self.key_size = self.window_size[0] * 2
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        
        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
        
        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0

        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww

        
        attn = attn + relative_position_bias.unsqueeze(0)

      
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        #return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
        return f'dim={self.dim}, num_heads={self.num_heads}'
    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops

class GlobalAttention(nn.Module):
    r""" MOA - multi-head self attention (W-MSA) module with relative position bias.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, input_resolution,num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.query_size = self.window_size[0]
       
        self.key_size = self.window_size[0] + 2
        h,w = input_resolution
        self.seq_len = h//self.query_size
    
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.reduction = 32
        self.pre_conv = nn.Conv2d(dim, int(dim//self.reduction), 1)
     
      
        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * self.seq_len - 1) * (2 * self.seq_len - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
        #print(self.relative_position_bias_table.shape)
        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.seq_len)
        coords_w = torch.arange(self.seq_len)
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
     
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2

        relative_coords[:, :, 0] += self.seq_len - 1  # shift to start from 0

        relative_coords[:, :, 1] += self.seq_len - 1
        relative_coords[:, :, 0] *= 2 * self.seq_len - 1
       
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
      
        self.register_buffer("relative_position_index", relative_position_index)
        
       

        self.queryembedding = Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = self.query_size, p2 = self. query_size)

        self.keyembedding = nn.Unfold(kernel_size=(self.key_size, self.key_size), stride = 14, padding=1)
   
        self.query_dim = int(dim//self.reduction) * self.query_size * self.query_size
        self.key_dim = int(dim//self.reduction) * self.key_size * self.key_size
                
        self.q = nn.Linear(self.query_dim, self.dim,bias=qkv_bias)
        self.kv = nn.Linear(self.key_dim, 2*self.dim,bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim,dim)
        self.proj_drop = nn.Dropout(proj_drop)

        #trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, H, W):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """

        #B, H, W, C = x.shape
        B,_, C = x.shape  
          
        x = x.reshape(-1, C, H, W)    
        x = self.pre_conv(x)
        query = self.queryembedding(x).view(B,-1,self.query_dim)
        query = self.q(query)
        B,N,C = query.size()
        
        q = query.reshape(B,N,self.num_heads, C//self.num_heads).permute(0,2,1,3)
        key = self.keyembedding(x).view(B,-1,self.key_dim)
        kv = self.kv(key).reshape(B,N,2,self.num_heads,C//self.num_heads).permute(2,0,3,1,4)
        k = kv[0]
        v = kv[1]
        
        
        q = q * self.scale
        
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.seq_len * self.seq_len, self.seq_len * self.seq_len, -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww

       
        attn = attn + relative_position_bias.unsqueeze(0)
      
        attn = self.softmax(attn)
        
        attn = self.attn_drop(attn)
     
        x = (attn @ v).transpose(1, 2).reshape(B, N, C) 
     
        x = self.proj(x)
      
        x = self.proj_drop(x)

        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


class LocalTransformerBlock(nn.Module):
    r""" Local Transformer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, window_size=7,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
   
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
           
            self.window_size = min(self.input_resolution)
   
       
        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)



    def forward(self, x):
        H, W = self.input_resolution
     
        B, L, C = x.shape
      
        assert L == H * W, "input feature has wrong size"
       
        shortcut = x
        x = self.norm1(x)
        
        x = x.view(B, H, W, C)
     

    
        x_windows = window_partition(x, self.window_size)  # nW*B, window_size, window_size, C 
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C     
        attn_windows = self.attn(x_windows)  # nW*B, window_size*window_size, C    
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C
        x = x.view(B, H * W, C)


       

 
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops


class PatchMerging(nn.Module):
    """ Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
        return flops


class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, drop_path_global=0., use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint
        self.window_size = window_size
       
        self.drop_path_gl = DropPath(drop_path_global) if drop_path_global > 0. else nn.Identity()
        # build blocks
        self.blocks = nn.ModuleList([
            LocalTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
           if min(self.input_resolution) >= self.window_size:
                 self.glb_attn = GlobalAttention(dim, to_2tuple(window_size), self.input_resolution, num_heads = num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
                 self.post_conv = nn.Conv2d(dim, dim, 3, padding=1)
                 self.norm1 = norm_layer(dim)
                 self.norm2 = norm_layer(dim)
                
           else:
                 self.post_conv = None
                 self.glb_attn = None
                 self.norm1 = None
                 self.norm2 = None
                
           self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
           
            
        else:
            self.downsample = None
            
    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
                
        if self.downsample is not None:
        
           if min(self.input_resolution) >= self.window_size:
                shortcut = x
                x = self.norm1(x)
                H, W = self.input_resolution
                B,_,C = x.size()
         
                no_window = int(H*W/self.window_size**2)   
                local_attn = x.view(B,no_window,self.window_size, self.window_size,C)
             
                glb_attn = self.glb_attn(x, H, W)
                glb_attn = glb_attn.view(B,no_window,1,1,C)
                x = torch.add(local_attn, glb_attn).view(B,C,H,W)
              

                x = shortcut.view(B,C,H,W) + self.drop_path_gl(x)
                x = self.norm2(x.view(B,H*W,C))
                post_conv = self.drop_path_gl(self.post_conv(x.view(B,C,H,W))).view(B, H*W, C)
                x = x + post_conv
                
           x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops


class MOATransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        dpr_global = [x.item() for x in torch.linspace(0, 0.2, len(depths)-1)]
        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               window_size=window_size,
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer,
                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                               drop_path_global = (dpr_global[i_layer]) if (i_layer < self.num_layers -1) else 0,
                               use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)
 
        for layer in self.layers:
            x = layer(x)
           
        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1317131.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【从零开始学习JVM | 第九篇】了解 常见垃圾回收器

前言&#xff1a; 垃圾回收器&#xff08;Garbage Collector&#xff09;是现代编程语言中的一项重要技术&#xff0c;它提供了自动内存管理的机制&#xff0c;极大地简化了开发人员对内存分配和释放的繁琐工作。通过垃圾回收器&#xff0c;我们能够更高效地利用计算机的内存资…

MetaAI发布Seamless:两秒内实现跨语言同声传译

在当今日益互联的世界中&#xff0c;语言差异常常成为沟通的障碍。MetaAI最新发布的语音翻译大模型Seamless&#xff0c;正是为打破这一障碍而生。Seamless不仅提供流畅、高效的多语言翻译功能&#xff0c;更在保留说话人韵律和风格方面取得突破&#xff0c;是AI同声传译领域的…

Python开源项目周排行 2023年第40周

Python 趋势周报&#xff0c;按周浏览往期 GitHub,Gitee 等最热门的Python开源项目&#xff0c;入选的项目主要参考GitHub Trending,部分参考了Gitee和其他。排名不分先后&#xff0c;都是当周相对热门的项目。 入选公式&#xff1d;70%GitHub Trending20%Gitee10%其他 关注微…

Tekton 构建容器镜像

Tekton 构建容器镜像 介绍如何使用 Tektonhub 官方 kaniko task 构建docker镜像&#xff0c;并推送到远程dockerhub镜像仓库。 kaniko task yaml文件下载地址&#xff1a;https://hub.tekton.dev/tekton/task/kaniko 查看kaniko task yaml内容&#xff1a; 点击Install&…

QQ邮箱发送工具类的实现

我们在日常开发中&#xff0c;需要实现一个对邮箱的发送&#xff0c;今天就实现邮箱的发送工具类&#xff0c;只需要一些注册邮箱之后的配置即可&#xff0c;我这边使用的是qq邮箱 0.加上依赖 <!--邮箱--><dependency><groupId>org.springframework.boot&l…

Docker单机部署OceanBase

文章目录 说明机器软硬件要求指导文档本次部署环境说明 OceanBase单机部署&#xff08;Docker&#xff09;一&#xff1a;拉取 OceanBase 数据库相关镜像二&#xff1a;启动 OceanBase 数据库实例完整启动日志展示 三&#xff1a;连接实例遇到报错&#xff1a;没有mysql客户端 …

【lesson14】MySQL表的基本查询retrieve(读取)1

文章目录 表的基本操作介绍retrieveselect列建表基本测试 where子句建表基本测试 表的基本操作介绍 CRUD : Create(创建), Retrieve(读取)&#xff0c;Update(更新)&#xff0c;Delete&#xff08;删除&#xff09; retrieve select列 建表 基本测试 插入数据 全列查询 …

GoogLeNet(pytorch)

亮点与创新&#xff1a; 1. 引入Inception基础结构 2. 引入PW维度变换卷积&#xff0c;启迪后续参数量的优化 3. 丢弃全连接层&#xff0c;使用平均池化层&#xff08;大大减少模型参数&#xff09; 4. 添加两个辅助分类器帮助训练&#xff08;避免梯度消失&#xff0c;用于…

智能电气柜环境监测系统

智能电气柜环境监控系统是一种基于传感器技术和物联网技术的智能化监控系统&#xff0c;用于对电气柜内的环境参数进行实时监测和管理。依托智慧电力运维工具-电易云&#xff0c;通过安装在电气柜内的多个传感器&#xff0c;实时采集电气柜内的温度、湿度、氧气浓度、烟雾等关键…

windows redis 允许远程访问配置

安装好windows版本的redis&#xff0c;会以服务方式启动&#xff0c;但是不能远程访问&#xff0c;这个时候需要修改配置。redis安装路径下会有2个配置文件&#xff0c;究竟需要怎么修改才能生效呢&#xff1f;看下图 这里的redis服务指定了是redis.windows-service.conf文件&…

java_web_电商项目

java_web_电商项目 1.登录界面2.注册界面3. 主界面4.分页界面5.商品详情界面6. 购物车界面7.确认订单界面8.个人中心界面9.收货地址界面10.用户信息界面11.用户余额充值界面12.后台首页13.后台商品增加14.后台用户增加15.用户管理16.源码分享1.登录页面的源码2.我们的主界面 1.…

Xml与Json格式在线转换器

具体请前往&#xff1a;在线Json转Form表单参数工具

计算机网络(四)

九、网络安全 &#xff08;一&#xff09;什么是网络安全&#xff1f; A、网络安全状况 分布式反射攻击逐渐成为拒绝攻击的重要形式 涉及重要行业和政府部门的高危漏洞事件增多。 基础应用和通用软硬件漏洞风险凸显&#xff08;“心脏出血”&#xff0c;“破壳”等&#x…

springMVC-@RequestMapping

基本介绍 RequestMapping注解可以指定控制器/处理器的某个方法的请求的url, 示例 &#xff08;结合springMVC基本原理理解&#xff09; Controller public class UserHandler {RequestMapping(value "/login")public String login() {System.out.println("登…

JOSEF约瑟 静态双位置继电器 DPR-35 DC110V柜内固定安装,板前接线

系列型号&#xff1a; DPR-20双位置继电器&#xff1b;DPR-31双位置继电器&#xff1b; DPR-32双位置继电器&#xff1b;DPR-33双位置继电器&#xff1b; DPR-34双位置继电器&#xff1b;DPR-35双位置继电器&#xff1b; DPR-11双位置继电器&#xff1b;DPR-12双位置继电器…

【数据结构和算法】--队列的特殊结构-循环队列

目录 循环队列的结构循环队列的实现循环队列的创建循环队列为空判断循环队列为满判断入队出队返回循环队列首元素返回循环队列尾元素释放循环队列 循环队列的结构 循环队列是队列的一种特殊结构&#xff0c;它的长度是固定的k&#xff0c;同样是先进先出&#xff0c;理论结构是…

飞天使-docker知识点6-容器dockerfile各项名词解释

文章目录 docker的小技巧dockerfile容器为什么会出现启动了不暂停查看docker 网桥相关信息 docker 数据卷 docker的小技巧 [rootlight-test playbook-vars[]# docker inspect -f "{{.NetworkSettings.IPAddress}}" d3a9ae03ae5f 172.17.0.4docker d3a9ae03ae5f:/etc…

RK3399平台开发系列讲解(内核入门篇)什么是函数调用栈

🚀返回专栏总目录 文章目录 一、什么是函数调用栈二、函数调用栈解析三、什么是stack overflow沉淀、分享、成长,让自己和他人都能有所收获!😄 📢在开发软件的过程中我们经常会遇到错误,如果你用 Google 搜过出错信息,那你多少应该都访问过Stack Overflow这个网站。作…

三、JS逆向

一、JS逆向 解释&#xff1a;在我们爬虫的过程中经常会遇到参数被加密的情况&#xff0c;这样只有先在前端搞清楚加密参数是怎么生成的才能继续我们的爬虫&#xff0c;而且此时我们还需要用python去执行这个加密的过程。本文主要讲怎么在浏览器调试JS&#xff0c;以及Python执…