智能优化算法应用:基于热交换算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/17 17:54:40

智能优化算法应用:基于热交换算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于热交换算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.热交换算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用热交换算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.热交换算法

热交换算法原理请参考:https://blog.csdn.net/u011835903/article/details/114221597
热交换算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


热交换算法参数如下:

%% 设定热交换优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明热交换算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1314750.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数字电路】MacBook使用iverilog进行数字电路仿真

安装流程 在终端中用brew包管理工具进行安装仿真工具: 编译verilog代码: brew install icarus-verilog编译verilog代码: brew install verilatorMacOS系统显示UNIX GUI brew install xquartz可视化仿真波形图: brew install gtk…

2024年天津体育学院专升本专业课网上报名确认缴费安排

天津体育学院2024年高职升本科专业考试报名安排 一、时间安排 1.报名时间:2023年12月19日9:00-12月21日17:00 2.缴费时间:2023年12月26日-27日 (考试考务费:体育教育专业:160元/人&#xff…

项目中使用Arrays.asList、ArrayList.subList的坑

使用Arrays.asList的注意事项 1.1 可能会踩的坑 先来看下Arrays.asList的使用&#xff1a; List<Integer> statusList Arrays.asList(1, 2); System.out.println(statusList); System.out.println(statusList.contains(1)); System.out.println(statusList.contains(3)…

C之switch小问题

执行结果&#xff1a; 为什么会是100呢&#xff1f; 因为C语言会忽视 switch语句与第一个case之间的code&#xff0c;也就是根本不会执行 “num100;

el-date-picker 选择一个或多个日期

el-date-picker可选择多个日期 type“dates” 加个s即可 <div><span>el-date-picker选择多个日期</span><el-date-pickertype"dates"v-model"dateList"placeholder"选择一个或多个日期"></el-date-picker></di…

RabbitMQ插件详解:rabbitmq_message_timestamp【Rabbitmq 五】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 RabbitMQ时空之旅&#xff1a;rabbitmq_message_timestamp的奇妙世界 前言什么是rabbitmq_message_timestamprabbitmq_message_timestamp 的定义与作用&#xff1a;如何在 RabbitMQ 中启用消息时间戳&…

聚观早报 |红魔9 Pro氘锋透明银翼版开售;荣耀90 GT将发布

【聚观365】12月16日消息 红魔9 Pro氘锋透明银翼版开售 荣耀90 GT将发布 德国成功化解预算僵局 第二届起点读书“网文填坑节”收官 阿维塔科技拟 2025 年赴港上市 红魔9 Pro氘锋透明银翼版开售 现在有最新消息&#xff0c;近日红魔9 Pro氘锋透明银翼版本开启全款预售&…

Java实现插入排序及其动图演示

插入排序是一种简单直观的排序算法。它的基本思想是将一个待排序的元素插入到已经排序好的序列中的适当位置&#xff0c;从而得到一个新的、元素个数加一的有序序列。 具体的插入排序算法过程如下&#xff1a; 从第一个元素开始&#xff0c;认为第一个元素已经是有序序列。取…

C/C++ STL提供的序列式容器之deque

deque是双向开口的连续内存空间&#xff08;动态将多个连续空间通过指针数组接合在一起&#xff09;&#xff0c;随时可以增加一段新的空间。 deque 的最大任务就是在这些分段的连续空间上&#xff0c;维护其整体连续的假象&#xff0c;并提供随机存取的接口。 特点 1. 一…

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型

目录 前言 1 风速数据EMD分解与可视化 1.1 导入数据 1.2 EMD分解 2 数据集制作与预处理 2.1 先划分数据集&#xff0c;按照8&#xff1a;2划分训练集和测试集 2.2 设置滑动窗口大小为96&#xff0c;制作数据集 3 基于Pytorch的EMD-CNN-LSTM模型预测 3.1 数据加载&…

KMP算法, 什么是KMP算法 ,暴力匹配 ,KMP算法实现

文章目录 KMP算法什么是KMP算法暴力匹配KMP算法实现 KMP算法 什么是KMP算法 KMP是Knuth、Morris和Pratt首字母的缩写&#xff0c;KMP也是由这三位学者发明&#xff08;1977年联合发表论文&#xff09;。 KMP主要应用在字符串的匹配&#xff0c;是一个解决模式串在文本串是否…

OxLint 发布了,Eslint 何去何从?

由于最近的rust在前端领域的崛起&#xff0c;基于rust的前端生态链遭到rust底层重构&#xff0c;最近又爆出OxLint&#xff0c;是一款基于Rust的linter工具Oxlint在国外前端圈引起热烈讨论&#xff0c;很多大佬给出了高度评价&#xff1b;你或许不知道OxLint&#xff0c;相比ES…

互联网大厂月薪分布:字节跳动超 5% 员工月薪高于 5 万

近期&#xff0c;某统计机构公开了国内互联网巨头的薪资分布情况。根据统计数据显示&#xff0c;贝壳、阿里、滴滴、拼多多、快手和腾讯等公司超过60%的员工&#xff0c;月薪集中在3-5万的区间。而拼多多和字节跳动更有超过5%的员工月薪超过5万。 华为&#xff0c;一个众所周知…

error: src refspec master does not match any

新项目 push 至 github 仓库的时候抛出了如下异常 error: src refspec master does not match any 解决办法 首先,查看当前 branch, 因新项目只有一个 main git branch早期都是 master 而不是 main,所以将现有的改成 main 或者 master 均可 git branch -m main // 或者 git…

前端自定义验证码,校验验证码,验证码时效

最近做的项目&#xff0c;不需要后端接口&#xff0c;只需要前端验证&#xff0c;如图 初始页面 获取验证码 验证码的文件&#xff0c;直接复制就行 <template><div class"s-canvas"><canvasid"s-canvas":width"contentWidth":…

【k8s】使用Finalizers控制k8s资源删除

文章目录 词汇表基本删除操作Finalizers是什么&#xff1f;Owner References又是什么&#xff1f;强制删除命名空间参考 你有没有在使用k8s过程中遇到过这种情况: 通过kubectl delete指令删除一些资源时&#xff0c;一直处于Terminating状态。 这是为什么呢&#xff1f; 本文将…

Docker-consule 服务发现与注册

consul服务更新和服务发现 什么是服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的&#xff0c;不保障高可用性&#xff0c;也不考虑服务的压力承载&#xff0c;服务之间调用单纯的通过接口访问。直到后来出现了多个节点的分布式架构&…

CSS margin-trim

margin-trim 主角登场主角的局限性兼容性 margin-trim &#x1f9ea;这是一个实验性的属性, 目前仅有 Safari 支持 看这个属性的名字就知道, 外边距修剪. 平常都会遇到一些排版上的问题, 比如垂直排列的元素之间增加下外边距 <div><li>123</li><li>…

提前预警,时刻守护:迅软DLP的数据安全先锋

许多数据泄密事件的发生&#xff0c;往往都是由于没有在案发事前做好安全保护&#xff0c;使得重要信息被随意攻击、盗取、泄密。比起在危机发生后亡羊补牢&#xff0c;更重要的是应该在案发之前未雨绸缪。迅软DLP作为迅软股份研发的“重磅选手”&#xff0c;可为政企单位在一切…

中职网络安全应急响应—Server2228

应急响应 任务环境说明: 服务器场景:Server2228(开放链接) 用户名:root,密码:p@ssw0rd123 1. 找出被黑客修改的系统别名,并将倒数第二个别名作为Flag值提交; 通过用户名和密码登录系统 在 Linux 中,利用 “alias” 命令去查看当前系统中定义的所有别名 flag:ss …