【深度学习】强化学习(四)强化学习的值函数

news2025/1/6 20:01:45

文章目录

  • 一、强化学习问题
    • 1、交互的对象
    • 2、强化学习的基本要素
    • 3、策略(Policy)
    • 4、马尔可夫决策过程
    • 5、强化学习的目标函数
    • 6、值函数
      • 1. 状态值函数(State Value Function)
        • a. 状态值函数的定义
        • b. 贝尔曼方程(Bellman Equation)
      • 2. 状态-动作值函数(State-Action Value Function)
      • 3. 值函数的作用
        • a. 评估策略
        • b. 优化策略
        • c. 改进策略
        • d. 探索与利用的平衡

一、强化学习问题

  强化学习的基本任务是通过智能体与环境的交互学习一个策略,使得智能体能够在不同的状态下做出最优的动作,以最大化累积奖励。这种学习过程涉及到智能体根据当前状态选择动作,环境根据智能体的动作转移状态,并提供即时奖励的循环过程。

1、交互的对象

  在强化学习中,有两个可以进行交互的对象:智能体环境

  • 智能体(Agent):能感知外部环境的状态(State)和获得的奖励(Reward),并做出决策(Action)。智能体的决策和学习功能使其能够根据状态选择不同的动作,学习通过获得的奖励来调整策略。

  • 环境(Environment):是智能体外部的所有事物,对智能体的动作做出响应,改变状态,并反馈相应的奖励。

2、强化学习的基本要素

  强化学习涉及到智能体与环境的交互,其基本要素包括状态、动作、策略、状态转移概率和即时奖励。

  • 状态(State):对环境的描述,可能是离散或连续的。

  • 动作(Action):智能体的行为,也可以是离散或连续的。

  • 策略(Policy):智能体根据当前状态选择动作的概率分布。

  • 状态转移概率(State Transition Probability):在给定状态和动作的情况下,环境转移到下一个状态的概率。

  • 即时奖励(Immediate Reward):智能体在执行动作后,环境反馈的奖励。

3、策略(Policy)

  策略(Policy)就是智能体如何根据环境状态 𝑠 来决定下一步的动作 𝑎(智能体在特定状态下选择动作的规则或分布)。

  • 确定性策略(Deterministic Policy) 直接指定智能体应该采取的具体动作
  • 随机性策略(Stochastic Policy) 则考虑了动作的概率分布,增加了对不同动作的探索。

上述概念可详细参照:【深度学习】强化学习(一)强化学习定义

4、马尔可夫决策过程

  为了简化描述,将智能体与环境的交互看作离散的时间序列。智能体从感知到的初始环境 s 0 s_0 s0 开始,然后决定做一个相应的动作 a 0 a_0 a0,环境相应地发生改变到新的状态 s 1 s_1 s1,并反馈给智能体一个即时奖励 r 1 r_1 r1,然后智能体又根据状态 s 1 s_1 s1做一个动作 a 1 a_1 a1,环境相应改变为 s 2 s_2 s2,并反馈奖励 r 2 r_2 r2。这样的交互可以一直进行下去: s 0 , a 0 , s 1 , r 1 , a 1 , … , s t − 1 , r t − 1 , a t − 1 , s t , r t , … , s_0, a_0, s_1, r_1, a_1, \ldots, s_{t-1}, r_{t-1}, a_{t-1}, s_t, r_t, \ldots, s0,a0,s1,r1,a1,,st1,rt1,at1,st,rt,,其中 r t = r ( s t − 1 , a t − 1 , s t ) r_t = r(s_{t-1}, a_{t-1}, s_t) rt=r(st1,at1,st) 是第 t t t 时刻的即时奖励。这个交互过程可以被视为一个马尔可夫决策过程(Markov Decision Process,MDP)
在这里插入图片描述

关于马尔可夫决策过程可详细参照:【深度学习】强化学习(二)马尔可夫决策过程

5、强化学习的目标函数

  强化学习的目标是通过学习一个良好的策略来使智能体在与环境的交互中获得尽可能多的平均回报。强化学习的目标函数 J ( θ ) J(\theta) J(θ) 定义如下: J ( θ ) = E τ ∼ p θ ( τ ) [ G ( τ ) ] = E τ ∼ p θ ( τ ) [ ∑ t = 0 T − 1 γ t r t + 1 ] J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[G(\tau)] = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t=0}^{T-1} \gamma^t r_{t+1}\right] J(θ)=Eτpθ(τ)[G(τ)]=Eτpθ(τ)[t=0T1γtrt+1]其中, θ \theta θ 表示策略函数的参数, τ \tau τ 表示强化学习的轨迹, γ \gamma γ 是折扣率……

  • 这个目标函数表达的是在策略 π θ \pi_{\theta} πθ 下,智能体与环境交互得到的总回报的期望。(这个期望是对所有可能的轨迹进行的)
  • 总回报(Total Return)是对一个轨迹的累积奖励,引入折扣率(Discount Factor)来平衡短期和长期回报。
    • 总回报:对于一次交互过程的轨迹,总回报是累积奖励的和。
    • 折扣回报:引入折扣率,考虑未来奖励的权重。

关于目标函数可详细参照:【深度学习】强化学习(三)强化学习的目标函数

6、值函数

  在强化学习中,为了评估策略 π \pi π 的期望回报,引入了值函数的概念,包括状态值函数状态-动作值函数

1. 状态值函数(State Value Function)

a. 状态值函数的定义

  状态值函数表示从某个状态开始,按照特定策略执行后获得的期望总回报。

  • 状态值函数的定义:

V π ( s ) = E τ ∼ p ( τ ) [ ∑ t = 0 T − 1 γ t r t + 1 ∣ τ s 0 = s ] V^\pi(s) = \mathbb{E}_{\tau \sim p(\tau)} \left[ \sum_{t=0}^{T-1} \gamma^t r_{t+1} \bigg| \tau_{s_0} = s \right] Vπ(s)=Eτp(τ)[t=0T1γtrt+1 τs0=s]

其中, τ \tau τ 表示强化学习的轨迹, γ \gamma γ 是折扣因子, s s s 是状态。状态值函数 V π ( s ) V^\pi(s) Vπ(s) 表示从状态 s s s 开始,执行策略 π \pi π 后获得的期望总回报。

b. 贝尔曼方程(Bellman Equation)

进一步,我们可以使用贝尔曼方程来表示状态值函数的计算:

V π ( s ) = E a ∼ π ( a ∣ s ) [ E s ′ ∼ p ( s ′ ∣ s , a ) [ r ( s , a , s ′ ) + γ V π ( s ′ ) ] ] V^\pi(s) = \mathbb{E}_{a \sim \pi(a|s)} \left[ \mathbb{E}_{s' \sim p(s'|s,a)} \left[ r(s, a, s') + \gamma V^\pi(s') \right] \right] Vπ(s)=Eaπ(as)[Esp(ss,a)[r(s,a,s)+γVπ(s)]]

  • 推导过程
    在这里插入图片描述

  • 贝尔曼方程表明,当前状态的值函数可以通过下一个状态的值函数来计算,这是强化学习中常用的迭代计算方法之一。在实际应用中,通过不断更新状态值函数,智能体可以逐步优化其策略,从而在环境中获得更好的回报。

2. 状态-动作值函数(State-Action Value Function)

  状态-动作值函数(Q函数或Q值)是另一种重要的值函数,它衡量在给定状态 s s s 下,采取特定动作 a a a 并按照某一策略执行后所获得的期望总回报。

  • 状态-动作值函数的定义:
    Q π ( s , a ) = E s ′ ∼ p ( s ′ ∣ s , a ) [ r ( s , a , s ′ ) + γ V π ( s ′ ) ] Q^\pi(s, a) = \mathbb{E}_{s' \sim p(s'|s,a)} \left[ r(s, a, s') + \gamma V^\pi(s') \right] Qπ(s,a)=Esp(ss,a)[r(s,a,s)+γVπ(s)]其中, Q π ( s , a ) Q^\pi(s, a) Qπ(s,a) 表示在状态 s s s 下采取动作 a a a 后,按照策略 π \pi π 执行的期望总回报。

  • 这个定义使用了之前介绍的状态值函数 V π ( s ) V^\pi(s) Vπ(s),表示了当前状态-动作对的价值。

  • 状态值函数和状态-动作值函数之间的关系可以通过以下方程表示: V π ( s ) = E a ∼ π ( a ∣ s ) [ Q π ( s , a ) ] V^\pi(s) = \mathbb{E}_{a \sim \pi(a|s)} \left[ Q^\pi(s, a) \right] Vπ(s)=Eaπ(as)[Qπ(s,a)]

    • 这说明状态值函数是关于动作的期望值,而状态-动作值函数则提供了每个动作在给定状态下的具体估计值
  • 状态-动作值函数满足贝尔曼方程,表示为:
    Q π ( s , a ) = E s ′ ∼ p ( s ′ ∣ s , a ) [ r ( s , a , s ′ ) + γ E a ′ ∼ π ( a ′ ∣ s ′ ) [ Q π ( s ′ , a ′ ) ] ] Q^\pi(s, a) = \mathbb{E}_{s' \sim p(s'|s,a)} \left[ r(s, a, s') + \gamma \mathbb{E}_{a' \sim \pi(a'|s')} \left[ Q^\pi(s', a') \right] \right] Qπ(s,a)=Esp(ss,a)[r(s,a,s)+γEaπ(as)[Qπ(s,a)]]

  • Q函数的不断迭代计算可以帮助智能体更好地理解状态和动作的关联,从而制定更优化的策略。在深度强化学习中,Q函数的使用更为普遍,特别是在处理复杂、连续状态和动作空间的问题时。

3. 值函数的作用

  值函数的引入为强化学习提供了一种有效的手段,使得我们可以通过对值函数的优化来改进策略,从而使智能体更好地在环境中行动。

  • 状态值函数 V π ( s ) V^{\pi}(s) Vπ(s)

    • 评估在状态 s s s 下采用策略 π \pi π 的效果,即从状态 s s s 出发,执行策略 π \pi π 所获得的期望总回报。
    • 可以用来比较不同状态的价值,帮助智能体决策。
  • 状态-动作值函数 Q π ( s , a ) Q^{\pi}(s, a) Qπ(s,a):

    • 评估在状态 s s s 下采取动作 a a a 并执行策略 π \pi π 的效果,即获得的期望总回报。
    • 可以用来指导智能体在给定状态下选择最优动作。
a. 评估策略

  值函数可以用于评估给定策略的好坏:比如,状态值函数 V π ( s ) V^\pi(s) Vπ(s) 表示在策略 π \pi π 下,从状态 s s s 开始执行策略的期望总回报,通过评估状态值函数,我们可以了解在不同状态下策略的性能,并比较不同策略之间的优劣。
V π ( s ) = E τ ∼ π [ G ( τ ) ∣ τ 0 = s ] V^\pi(s) = \mathbb{E}_{\tau \sim \pi} \left[ G(\tau) \mid \tau_0 = s \right] Vπ(s)=Eτπ[G(τ)τ0=s]

b. 优化策略

  基于值函数,我们可以通过优化策略来提高智能体的性能:当我们在某个状态 s s s 发现一个动作 a ∗ a^* a 使得 Q π ( s , a ∗ ) > V π ( s ) Q^\pi(s, a^*) > V^\pi(s) Qπ(s,a)>Vπ(s),即执行动作 a ∗ a^* a 的回报比当前策略的状态值更高,我们可以调整策略的参数,增加在状态 s s s 选择动作 a ∗ a^* a 的概率,从而优化策略。

π ′ ( a ∣ s ) = { π ( a ∣ s ) + ϵ if  a = a ∗ π ( a ∣ s ) − ϵ if  a ≠ a ∗ \pi'(a|s) = \begin{cases} \pi(a|s) + \epsilon & \text{if } a = a^* \\ \pi(a|s) - \epsilon & \text{if } a \neq a^* \end{cases} π(as)={π(as)+ϵπ(as)ϵif a=aif a=a
这个过程可以通过各种优化算法实现,例如梯度上升法(Policy Gradient Methods)。

c. 改进策略

  通过值函数的指导,我们可以设计更智能的策略,不仅考虑当前状态的回报,还能充分考虑长期的影响。

d. 探索与利用的平衡

  通过对值函数的估计,智能体可以更好地判断哪些动作可能导致更高的回报,从而在探索新动作和利用已知好动作之间找到平衡。

  值函数在强化学习中起到了桥梁的作用,连接了策略、状态和动作的关系。它们是智能体学习和改进的核心工具,使其能够在未知环境中获得最大的累积奖励。在深度强化学习中,利用深度神经网络逼近值函数,使其能够应对更复杂的状态和动作空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1312928.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

现代C++ 实现单例模式

传统写法有什么问题 如果你了解过单例模式,双重检查锁定模式(Double-Checked Locking Pattern,后文简称DCLP)的写法你一定不会陌生,甚至你或许认为它是最正确的代码。 class Singleton { public://获取单例Singleton…

c# 为什么修改Font导致Location 变化

搜索引擎、各种人工智能,只有这个帮我解决了问题 然后我发现了这个 我就奇怪,一行行调试代码,最终发现设置Font,Location就变了,完全想不通

【C语言(十三)】

自定义类型:结构体 一、结构体类型的声明 1.1、结构体回顾 结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。 1.1.1、结构的声明 例如描述⼀个学生: struct Stu {char name[20];//名字int age;//年龄c…

又有AI工具啦~视频直接变动漫风格

把视频变成动漫风 - DOMO AI 看到网上发的把一段真的视频,转为动漫风格,是用的DOMO AI做的,就试了一下。 效果 随便找了个视频转为动漫风: 原视频 test_output 操作 1 、去Discord上搜索DOMO AI,加入社区。 2、选择…

vscode的文件和文件夹的警告标志如何消去

由于平时用vscode写一些java的小demo, 但是这个vscode的警告和错误管理很奇怪, 这个警告信息会显示在这个侧边的文件和文件夹中, 我上网上找能不能把这个给去掉的办法, 找了半天没找到。 于是我就自己去查了一下这个vscode的设置, 真让我找到了这方面的开关, 把下面的这个关闭…

win10 node-red安装及管理配置

win10 node-red安装及管理配置 一、安装node.js环境二、安装node-red环境2.1 node-red安装2.2 node-red安全登录方式 三、pm2管理node-red服务3.1 安装pm23.2 pm2管理node-red服务 四、常用命令4.1 npm命令4.2 pm2命令 更多 本文旨在详细介绍windows10系统下的node-red开发配置…

理解数字化转型:3个阶段、2个分类和3类价值

导读:数字化转型是基于IT技术提供业务所需要的支持,让业务和技术真正产生交互而诞生的。我们可以从概念及内涵、分类、价值等多个维度来理解企业数字化转型。 01 数字化转型的概念及内涵 数字化转型运用5G、人工智能、大数据、云计算等新一代数字技术&a…

最新盲盒交友脱单系统源码

盲盒交友脱单系统源码,学校 爱好 城市 地区 星座等等,首页轮转广告,页面美化,首页两款连抽高质量底部连抽,后台选择开关,邀请奖励爱心或者,提现达到金额有提成奖励,二级分销&#xf…

100ask imx6ull 驱动(设备树)装载步骤

1.修改设备树文件 路径: vim 100ask_imx6ull-sdk/Linux-4.9.88/arch/arm/boot/dts/100ask_imx6ull-14x14.dtb 2. 回到linux内核目录下,执行命令 /*路径:100ask_imx6ull-sdk/Linux-4.9.88*/ make dtbs 将生成的arch/arm/boot/dts/100ask_…

javascript实现Stack(栈)数据结构

上一篇文章我们理解了List这种数据结构,知道了它的特点和一些使用场景,这篇文章我们就来看一下栈这种数据结构,这里的栈可不是客栈哦,哈哈 栈其实和List非常像,使用javascript实现都是基于数组来实现 尝试理解Stack …

阿里云-虚拟主机退订

退订说明: https://help.aliyun.com/zh/cloud-web-hosting/product-overview/refund-instructions#section-bou-yhd-exp 进入菜单: https://usercenter2.aliyun.com/refund/refund 注: 1、退款只能到余额 2、已开票的款项,会…

【Spark精讲】RDD特性之数据本地化

目录 首选运行位置 数据的本地化级别 谁来负责数据本地化 数据本地化执行流程 调优 代码中的设置方法 首选运行位置 上图红框为RDD的特性五:每个RDD的每个分区都有一组首选运行位置,用于标识RDD的这个分区数据最好能够在哪台主机上运行。通过RDD的…

SQL中的三值逻辑:TRUE、FALSE 和 UNKNOWN。

在SQL中,通常采用三值逻辑处理条件表达式的真值。这种逻辑是基于三种可能的真值状态:TRUE、FALSE 和 UNKNOWN。 TRUE(真): 表示条件为真或成立。 FALSE(假): 表示条件为假或不成立。…

迎接数字化,亿发智能ERP管理系统解决方案,助力湖南企业精益生产提效

近年来,湖南省生产企业都尝试调整升级,进行数字化转型。因传统车间的管理业务存在着多方面的问题,如信息传输不畅、缺乏共享和互动功能,以及缺乏先进的统计、分析、预测及决策手段等,直接影响了公司生产效率的提高&…

LLM(六)| Gemini:谷歌Gemini Pro 开放API ,Gemini Pro 可免费使用

近期,Google Gemini Pro 开放API 了,且Gemini Pro 可免费使用!Gemini Pro支持全球180个国家的38种语言,目前接受文本作为输入并生成文本作为输出。 Gemini API 地址:http://ai.google.dev Gemini Pro 的表现超越了其他…

shopee数据分析工具:提升电商竞争力,探索Shopee工具的价值

在如今竞争激烈的电商市场中,商家需要利用各种工具和策略来提高自己的竞争力。Shopee作为一家知名的电商平台,为商家提供了一系列强大的数据分析工具,帮助商家更好地了解市场趋势、优化产品策略和提高运营效果。本文将介绍几款常见的Shopee数…

Pearson、Spearman 相关性分析使用

介绍 Pearson 积差相关系数衡量了两个定量变量之间的线性相关程度。 用来衡量两个数据集的线性相关程度,仅当一个变量的变化与另一个变量的比例变化相关时,关系才是线性的。 Spearman等级相关系数则衡量分级定序变量之间的相关程度。斯皮尔曼相关系数不…

【WinForm.NET开发】使用 TableLayoutPanel 在 Windows 窗体上排列控件

本文内容 创建项目在行和列中排列控件使用停靠和定位在单元格内放置控件设置行和列属性使用控件跨越行和列通过在工具箱中双击控件将其插入自动处理溢出通过绘制控件轮廓将其插入单元格内不允许有多个控件交换控件后续步骤 某些应用程序需要这样一个窗体,该窗体的…

C语言之⽂件操作

一为啥需要文件? 如果没有⽂件,我们写的程序的数据是存储在电脑的内存中,如果程序退出,内存回收,数据就丢失了,等再次运⾏程序,是看不到上次程序的数据的,如果要将数据进⾏持久化的保…

docker consul容器自动与注册

微服务(容器)注册与发现:是一种分布式的管理系统,定位服务的方法。 在传统架构当中,应用程序之间直连到已知服务,设备提供的网络:IP地址,基于tcp/ip,端口&#x…