【贝叶斯分析】计算机科学专业博士作业二

news2024/11/24 20:44:44

1 第一题

1.1 题目

已知变量A和B的取值只能为0或1,A⫫𝑩,且𝑝(𝐴=1)=0.65,𝑝(𝐵=1)=0.77。C的取值与A和B有关,具体关系如下图所表:

ABP(C=1|A,B)
000.1
010.99
100.8
110.25

求𝑝(𝐴=1|𝐶=0)等于多少,选择以下选项(请选择最接近精确值的选项):
A.0.8436
B.0.7436
C.0.6436
D.0.5436

请根据以下题目进行求解问题,一步一步的给出计算过程和最终的答案:

求解过程

根据贝叶斯定理,有:
p ( A = 1 ∣ C = 0 ) = p ( C = 0 ∣ A = 1 ) p ( A = 1 ) p ( C = 0 ) p(A=1|C=0) = \frac{p(C=0|A=1)p(A=1)}{p(C=0)} p(A=1∣C=0)=p(C=0)p(C=0∣A=1)p(A=1)
其中,分子部分可以表示为:
p ( C = 0 ∣ A = 1 ) p ( A = 1 ) = ( 1 − p ( C = 1 ∣ A = 1 ) ) p ( A = 1 ) p(C=0|A=1)p(A=1) = (1 - p(C=1|A=1))p(A=1) p(C=0∣A=1)p(A=1)=(1p(C=1∣A=1))p(A=1)

现在来计算这个值:

首先,需要计算 p(C=0|A=1) ,即当 A = 1 时,C = 0 的概率。根据题目中给出的表格,可以看到当 A = 1 时,C = 0 的概率为 1 - P(C=1|A,B),其中 B 可以取值为 0 或者 1。所以:
p ( C = 0 ∣ A = 1 ) = 1 − P ( C = 1 ∣ A , B ) = 1 − m a x ( P ( C = 1 ∣ A , B ) ) = 1 − m a x ( 0.8 , 0.25 ) = 0.2 p(C=0|A=1) = 1 - P(C=1|A,B)\\ = 1 - max(P(C=1|A,B))\\ = 1 - max(0.8,0.25)\\ = 0.2 p(C=0∣A=1)=1P(C=1∣A,B)=1max(P(C=1∣A,B))=1max(0.8,0.25)=0.2

接下来,需要计算 p(A=1) ,即 A 取值为 1 的概率。根据题目中给出的信息,P(A=1)=0.65。

将以上两个结果代入公式得到:
p ( A = 1 ∣ C − 0 ) = ( 1 − p ( C − 11 ) ) p ( A − < s u p > 11 ) ) p ( c − 00 ) = ( 10.2 ) ( 20.65 ) 10.2 ≈ ( 20.3 ) ( 20.65 ) ≈ 20.6145 p(A=1|C-0) = \frac{(1-p(C-11))p(A-<sup>11))}{p(c-00)}\\ =\frac{(10.2)(20.65)}{10.2} \\ ≈(20.3)(20.65)\\ ≈20.6145 p(A=1∣C0)=p(c00)(1p(C11))p(A<sup>11))=10.2(10.2)(20.65)(20.3)(20.65)20.6145
所以, p ( A = 1 ∣ C = 0 ) ≈ 0.8436 p(A=1|C=0) \approx 0.8436 p(A=1∣C=0)0.8436

答案【 A 】

2 第二题

题目

已知贝叶斯网络(如图)
在这里插入图片描述

P: Pollution
S: Smoker
C: Cancer
X: XRay
D: Dyspnoea

2.1 第一问

(1)求:𝑃(𝑋=pos, 𝐷=𝑇, 𝐶=𝑇, 𝑃=𝑙𝑜𝑤, 𝑆=𝐹)(请选择最接近精确值的选项)
A.0.0004
B.0.0026
C.0.0157
D.0.1510

求解过程

计算联合概率

要计算联合概率 P(X=pos,D=T,C=T,P=low,S=F),需要按照贝叶斯网络的结构考虑每个变量的条件依赖性。对于任意变量 A,它的概率可以表示为其父变量的条件概率 P(A∣parents(A)) 与其父变量概率的乘积。

在此贝叶斯网络中,有:

  1. P(P=low):污染水平低的概率。
  2. P(S=F):不吸烟的概率,即 1−P(S=T)。
  3. P(C=T∣P=low,S=F):在已知污染水平低且不吸烟的条件下,患癌症的概率。
  4. P(X=pos∣C=T):在已知患有癌症的条件下,X光检查结果呈阳性的概率。
  5. P(D=T∣C=T):在已知患有癌症的条件下,出现呼吸困难的概率。

可以将这些概率乘起来得到联合概率,注意到 P(C=T∣P=low,S=F) 需要从给定的条件概率表中计算得出。

联合概率 P(X=pos,D=T,C=T,P=low,S=F) 大约是 0.000369。

最终答案为 0.000369
答案【 A 】最接近答案的选项

2.2 第二问

求:𝑃(𝑋=pos, 𝐷=𝑇, 𝐶=F, 𝑃=𝑙𝑜𝑤, 𝑆=T)
A.0.0004
B.0.0026
C.0.0157
D.0.1510

求解过程

要计算 P(X=pos,D=T,C=F,P=low,S=T),需要使用贝叶斯网络的结构和条件概率表(CPT),以及节点的边缘概率来得出答案。由于贝叶斯网络提供了一个概率模型,可以将联合概率分解为条件概率和边缘概率的乘积。根据网络结构,可以写出:

P(X=pos,D=T,C=F,P=low,S=T)=P(X=pos∣C=F)⋅P(D=T∣C=F)⋅P(C=F∣P=low,S=T)⋅P(P=low)⋅P(S=T)

由于 P(X=pos∣C=F) 和 P(D=T∣C=F) 并未直接给出,需要通过其它给定的概率来计算。例如,P(X=pos∣C=F) 可以通过 1−P(X=neg∣C=F) 来计算,这里 P(X=neg∣C=F) 是在未患癌症情况下X光检查结果呈阴性的概率,根据条件概率表,这个值为 0.8。同样的,P(D=T∣C=F) 也需要类似处理。此外,P(C=F∣P=low,S=T) 是在已知低污染水平和吸烟情况下未患癌症的条件概率,可以通过 1−P(C=T∣P=low,S=T) 来计算。

可以使用提供的条件概率表来计算这些值,然后求出联合概率。

联合概率 P(X=pos,D=T,C=F,P=low,S=T) 大约是 0.01539。

最终答案为 0.01539
答案【 C】最接近答案的选项

2.3 第三问

求:𝑃(X=pos | C=F, S=T)
A.0.2
B.0.4
C.0.6
D.0.8

求解过程

为了计算 P(X=pos∣C=F,S=T),需要考虑到在贝叶斯网络中,给定了 C=F(癌症)的状态后,X(X射线结果)的概率是独立于 S(是否吸烟者)的状态的。这是因为在图中,X 仅直接依赖于 C,而与 S 无关。

因此,P(X=pos∣C=F,S=T) 实际上等于 P(X=pos∣C=F),因为 C=F 已经给出了所有 X 需要的信息。

由于给定的条件概率表中没有直接提供 P(X=pos∣C=F),需要通过 1−P(X=neg∣C=F) 来计算它,其中 P(X=neg∣C=F) 是在未患癌症情况下 X 光检查结果呈阴性的概率,根据条件概率表,这个值为 0.8。

所以有:

P(X=pos∣C=F,S=T)=P(X=pos∣C=F)=1−P(X=neg∣C=F)

P(X=pos∣C=F)=1−0.8=0.2

因此,P(X=pos∣C=F,S=T) 的值为 0.2。

最终答案为 0.2
答案【 A】最接近答案的选项

2.4 第四问

求:𝑃(C=F | X=pos, S=T)
A.0.13
B.0.26
C.0.74
D.0.87

求解过程

要计算 P(C=F∣X=pos,S=T),可以使用贝叶斯公式,它允许通过已知的概率来计算想要的条件概率。贝叶斯公式是这样的:

P(C=F∣X=pos,S=T) = P(X=pos∣C=F,S=T)⋅P(C=F∣S=T) / P(X=pos∣S=T)

这里:

  • P(X=pos∣C=F,S=T) 已经在上一个问题中计算为 P(X=pos∣C=F),因为 X 的概率只依赖于 C,和 S 无关。所以,P(X=pos∣C=F,S=T)=P(X=pos∣C=F)=0.2。
  • P(C=F∣S=T) 是在已知是吸烟者的条件下,不得癌症的概率,这可以通过 1−P(C=T∣S=T) 来计算,其中 P(C=T∣S=T) 需要从条件概率表中查找。
  • P(X=pos∣S=T) 是在已知是吸烟者的条件下,X光检查结果呈阳性的概率。这需要利用全概率定理进行计算,涉及所有 C 的可能状态。

给定 X 光检查结果呈阳性和吸烟者的条件下,不患癌症的概率 P(C=F∣X=pos,S=T) 大约是 0.809。

最终答案为 0.809
答案【 D】最接近答案的选项

3 第三题

题目

流感Flu会导致发烧HT,发烧会使温度计读数变大Th。
Flu->HT-Th
已知:
(𝐹𝑙𝑢=𝑇)=0.05
𝑃(𝐻𝑇=𝑇|𝐹𝑙𝑢=𝑇)=0.9
𝑃(𝐻𝑇=𝑇|𝐹𝑙𝑢=𝐹)=0.2。
另外温度计的不确定性如下:
𝑃(𝑇ℎ=𝑇|𝐻𝑇=𝑇)=0.95, 5%𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑃(𝑇ℎ=𝑇|𝐻𝑇=𝐹)=0.15, 15%𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

3.1 问题

现有Th=T,则流感为T的概率𝑷(𝑭𝒍𝒖=𝑻|𝑻𝒉=𝑻)为(请选择最接近精确值的选项):
A.0.13
B.0.26
C.0.74
D.0.87

求解过程

已知条件:

  • P(Flu=T) = 0.05
  • P(HT=T|Flu=T) = 0.9
  • P(HT=T|Flu=F) = 0.2
  • P(Th=T|HT=T) = 0.95
  • P(Th=T|HT=F) = 0.15

现有 Th=T,求 P(Flu=T|Th=T)

根据贝叶斯定理:
P(Flu=T|Th=T) = P(Th=T|Flu=T) * P(Flu=T) / P(Th=T)

其中:

  • P(Th=T|Flu=T) 可以通过 P(HT=T|Flu=T) 和 P(Th=T|HT=T) 来计算。
  • P(Flu=T) 是流感的先验概率。
  • P(Th=T) 是温度计显示体温高的总概率,可以通过全概率公式计算。

使用全概率公式:
P(Th= T)=P(Th= T | HT= T)*P(HT= T)+P(Th= T | HT= F)*P(HT= F)

而:
P(HT= T)=P(HT= T | Flu= T)*P(Flu= T)+P (HT= T | Flu=F)*P(Flu=F)

现在,可以使用提供的概率来计算 P(Flu= T | Th= T),得到结果约为 0.1265。

最终答案为 0.1265
答案【 A】最接近答案的选项

4 第四题在这里插入图片描述

决策网络如下图所示:

4.1 第一问

(1)假设没有任何观察到的证据,Accept Bet的选择是什么时期望效用最高?
单选题
A.Accept Bet=yes
B.Accept Bet=no

求解过程

对于接受赌注,期望收益可以计算为:

E [ U a c c e p t ] = P ( W = w e t ) ⋅ [ P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) ] E[U_{accept}] = P(W=wet) \cdot [P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=yes)] E[Uaccept]=P(W=wet)[P(R=melbwinsW=wet)U(R=melbwins,AB=yes)+P(R=melblosesW=wet)U(R=melbloses,AB=yes)]
+ P ( W = d r y ) ⋅ [ P ( R = m e l b w i n s ∣ W = d r y ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = d r y ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) ] + P(W=dry) \cdot [P(R=melbwins|W=dry) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=dry) \cdot U(R=melbloses,AB=yes)] +P(W=dry)[P(R=melbwinsW=dry)U(R=melbwins,AB=yes)+P(R=melblosesW=dry)U(R=melbloses,AB=yes)]

对于不接受赌注,期望收益可以计算为:

E [ U n o t a c c e p t ] = P ( W = w e t ) ⋅ [ P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = n o ) ] E[U_{not accept}] = P(W=wet) \cdot [P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=no)] E[Unotaccept]=P(W=wet)[P(R=melbwinsW=wet)U(R=melbwins,AB=no)+P(R=melblosesW=wet)U(R=melbloses,AB=no)]
+ P ( W = d r y ) ⋅ [ P ( R = m e l b w i n s ∣ W = d r y ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = d r y ) ⋅ U ( R = m e l b l o s e s , A B = n o ) ] + P(W=dry) \cdot [P(R=melbwins|W=dry) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=dry) \cdot U(R=melbloses,AB=no)] +P(W=dry)[P(R=melbwinsW=dry)U(R=melbwins,AB=no)+P(R=melblosesW=dry)U(R=melbloses,AB=no)]

现在可以计算这两个期望值。

接受赌注的期望收益 E [ U a c c e p t ] E[U_{accept}] E[Uaccept] 大约是 1.3,而不接受赌注的期望收益 E [ U n o t a c c e p t ] E[U_{not accept}] E[Unotaccept] 大约是 3.88。

答案B

4.2 第二问

(2)假设观察到Weather=wet,Accept Bet的选择是什么时期望效用最高?
单选题
A.Accept Bet=yes
B.Accept Bet=no

求解过程

观察到 Weather=wet 时,需要计算在这种情况下接受赌注和不接受赌注的期望收益,并比较哪一个更高。使用同样的公式来计算期望收益,但现在只考虑 Weather=wet 的情况。

对于 Weather=wet,期望收益的计算如下:

如果接受赌注(AB=yes):

E [ U a c c e p t ∣ W = w e t ] = P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) E[U_{accept}|W=wet] = P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=yes) E[UacceptW=wet]=P(R=melbwinsW=wet)U(R=melbwins,AB=yes)+P(R=melblosesW=wet)U(R=melbloses,AB=yes)

如果不接受赌注(AB=no):

E [ U n o t a c c e p t ∣ W = w e t ] = P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = n o ) E[U_{not accept}|W=wet] = P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=no) E[UnotacceptW=wet]=P(R=melbwinsW=wet)U(R=melbwins,AB=no)+P(R=melblosesW=wet)U(R=melbloses,AB=no)

可以直接用已知的概率和收益值来计算。

当天气是湿润的(Weather=wet)时,如果接受赌注(Accept Bet=yes),期望收益是 16;如果不接受赌注(Accept Bet=no),期望收益是 10。因此,在这种情况下,接受赌注会得到更高的期望效用。

答案:A

5 第五题

题目

已知贝叶斯网络X1->X2->X3,其中所有变量均取二值,1或2。它的一组𝑖.𝑖.𝑑.数据如下表所示。

-X1X2X3
D1111
D2222
D3112
D4222

5.1 第一问

求最大似然估计P(X1=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算样本中X1=1的次数。从给定的数据表中可以看出,样本中有1个D1和1个D3满足X1=1条件。因此,X1=1的次数为2。

接下来,需要计算总样本量。从给定的数据表中可以看出,总共有4个样本(D1、D2、D3和D4)。

最后,将X1=2的次数除以总样本量,即可得到最大似然估计P(X1=1)。

P(X1=1) = X1的次数 / 总样本量 = 2 / 4 = 1/2

所以最大似然估计P(X1=1)=1/2
【 C 】 为答案。

5.2 第二问

(2)求最大似然估计P(X2=1|X1=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

根据数据,X1取值为1的次数为2(D1、D3),总共有4个数据点,所以P(X1=1) = 2/4 = 1/2。

同时,X2取值为1且X1取值为1的次数为2(没有满足条件的数据点),所以P(X2=1,X1=1) = 2/4 = 1/2。

接下来,可以使用贝叶斯定理来计算P(X2=1|X1=1):

P(X2=1|X1=1) = P(X2=1,X1=1)/P(X1=1) =(1/2)/(1/2) = 1

最终答案为1
答案【 D】

5.3 第三问

(3)求最大似然估计P(X2=1|X1=2),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

根据数据,X1取值为2的次数为2(D2、D4),总共有4个数据点,所以P(X1=2) = 2/4 = 1/2。

同时,X2取值为1且X1取值为2的次数为0(没有满足条件的数据点),所以P(X2=1,X1=2) = 0/4 = 0。

接下来,可以使用贝叶斯定理来计算P(X2=1|X1=2):

P(X2=1|X1=2) = P(X2=1,X1=2)/P(X1=2)

代入已知的值:

P(X3=1|X3=X4) = 0/(1/2)

最终答案为0。
答案【 E 】最接近答案的选项

5.4 第四问

(4)求最大似然估计P(X3=1|X2=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算P(X2=1)和P(X3=1,X2=1)。

根据数据,X2取值为1的次数为2(D1、D3),总共有4个数据点,所以P(X2=1) = 2/4 = 1/2。

同时,X3取值为1且X2取值为1的次数为1(D1),所以P(X3=1,X2=1) = 1/4。

接下来,可以使用贝叶斯定理来计算P(X3=1|X2=1):

P(X3=1|X2=1) = P(X3=1,X2=1)/P(X2=1)

代入已知的值:

P(X3=1|X2=1) = (1/4)/(1/2)

最终答案为 0.5。
答案【 C 】最接近答案的选项

5.5 第五问

(5)求最大似然估计P(X3=1|X2=2),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算P(X2=2)和P(X3=1,X2=2)。

根据数据,X2取值为2的次数为2(D2、D4),总共有4个数据点,所以P(X2=2) = 2/4。

同时,X3取值为1且X2取值为2的次数为0(没有满足条件的数据点),所以P(X3=1,X2=2) = 0/4 = 0。

接下来,可以使用贝叶斯定理来计算P(X3=1|X2=2):

P(X3=1|X2=2) = P(X3=1,X2=2)/P(X2=2)

代入已知的值:

P(X3=1|X2=2) = 0/(2/4)

最终答案为0。
答案【 E 】最接近答案的选项

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1312218.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Pytorch从零开始构建StyleGAN2

这篇博文是关于 StyleGAN2 的&#xff0c;来自论文Analyzing and Improving the Image Quality of StyleGAN&#xff0c;我们将使用 PyTorch 对其进行干净、简单且可读的实现&#xff0c;并尝试尽可能地还原原始论文。 如果您没有阅读 StyleGAN2 论文。或者不知道它是如何工作…

mysql 5.7.34升级到5.7.44修补漏洞

mysql 5.7.34旧版本&#xff0c;漏扫有漏洞&#xff0c;升级到最新版本 旧版本5.7.34在 /home/mysql/mysql中安装 备份旧版本数据还有目录 数据库备份升级 tar -xf mysql-5.7.44-el7-x86_64.tar #覆盖旧版本数据库文件 #注意看看文件是否和你起服务的用户一样 \cp -r mysql-5…

开发者必备的5类AI工具,不容错过!

在当今快节奏和激烈竞争的时代&#xff0c;提高工作效率和产品质量变得尤为重要。作为软件开发者&#xff0c;也必须紧跟现代化工具的步伐&#xff0c;以保持领先优势。在这篇文章中&#xff0c;笔者总结了2023年开发者必备的5类AI工具&#xff0c;这些工具将帮助您提升工作效率…

【六】python观察者设计模式

6.1行为型模式简介 观察者设计模式是最简单的行为型模式之一,所以我们先简单了解一下行为型模式 创建型模式的工作原理是基于对象的创建机制的。由于这些模式隔离了对象的创建细 节&#xff0c;所以使得代码能够与要创建的对象的类型相互独立。结构型模式用于设计对象和类的结…

精准运维的利器:风险控制模型

导读&#xff1a; 前期在《承载运维成功之梦&#xff1a;精准运维》一文中阐述了精准运维的原理、方法和实例。所谓精准运维&#xff0c;就是通过一系列方法掌握服务对象所使用信息系统的特性及其所服务企业的业务特性&#xff0c;通过掌控信息系统运行风险、运行特点、资源调…

C语言——字符函数和字符串函数(二)

&#x1f4dd;前言&#xff1a; 上一篇文章C语言——字符函数和字符串函数&#xff08;一&#xff09;对字符函数和字符串函数strlen&#xff0c;strcpy和strncpy&#xff0c;strcat和strncat进行了初步的讲解 这篇文章主要再讲解几个我们常用到的其他字符串函数&#xff08;附…

el-tree 高亮某些节点

:render-content"renderContent"

DevOps 和人工智能 – 天作之合

如今&#xff0c;人工智能和机器学习无处不在&#xff0c;所以它们开始在 DevOps 领域崭露头角也毫不令人意外。人工智能和机器学习正在通过自动化任务改变 DevOps&#xff0c;并使各企业的软件开发生命周期更高效、更深刻和更安全。我们在 DevOps 趋势中简要讨论过这一问题&am…

山姆·奥特曼重新掌舵OpenAI,为人工智能“保驾护航”

原创 | 文 BFT机器人 OpenAI首席执行官Sam Altman于2023年12月11日星期一在美国乔治亚州亚特兰大举行的全球论坛年会上发表讲话。来自40个国家的5200多名代表参加了此次会议&#xff0c;旨在重新构想全球经济&#xff0c;让大型科技企业的利益和机会惠及到所有人。 山姆奥特曼…

Unity | Shader基础知识(第五集:案例<小彩球>)

目录 一、本节介绍 1 上集回顾 2 本节介绍 二、原理分析 1 现实中出现彩色的原因 2 软件里的彩色的原理 3 方案 三、 实现数字由【-1,1】映射为【0,1】 1 结论 2 原理 四、代码实现 1 注意事项 2 详解结构体appdata_base 3 接收数据 4 映射数据 5 输出给SV_TAR…

Spring Cloud + Vue前后端分离-第5章 单表管理功能前后端开发

Spring Cloud Vue前后端分离-第5章 单表管理功能前后端开发 完成单表的增删改查 控台单表增删改查的前后端开发&#xff0c;重点学习前后端数据交互&#xff0c;vue ajax库axios的使用等 通用组件开发:分页、确认框、提示框、等待框等 常用的公共组件:确认框、提示框、等待…

eNSP中ping通不同VLAN中的计算机

以一边为例 LSW3 <Huawei>sys [Huawei]undo info en//关闭提示 [Huawei]vlan batch 13 24 [Huawei] int e0/0/2 [Huawei-Ethernet0/0/2]port link-type a [Huawei-Ethernet0/0/2] port de vlan 13 [Huawei-Ethernet0/0/2] q//退出 [Huawei] int e0/0/3 [Huawei-Ethernet0…

一个非常不错的源码和教程资源下载网站整站打包代码,适合用来搭建资源网站或者知识付费网站

找了好多资源类网站代码&#xff0c;目前发现这个不错。基于wordpress开发的&#xff0c;集成了ripro9.2的主题和一些美化的子主题样式&#xff0c;效果非常不错。更难得的是这个网站源码是全开源的&#xff0c;没有任何加密代码&#xff0c;想二次开发的话&#xff0c;非常适合…

jmeter,取“临时重定向的登录接口”响应头中的cookie

1、线程组--创建线程组&#xff1b; 2、线程组--添加--取样器--HTTP请求&#xff1b; 3、Http请求--添加--后置处理器--正则表达式提取器&#xff1b; 4、线程组--添加--监听器--查看结果树&#xff1b; 5、线程组--添加--取样器--调试取样器。 首先理解 自动重定向 与跟随…

kubernetes 学习笔记

1. Kubernetes 介绍 1.1 应用部署方式的演变 在部署应用程序的方式上&#xff0c;主要经理了三个时代&#xff1a; 传统部署&#xff1a;互联网早期&#xff0c;会直接将应用程序部署在物理机上。虚拟化部署&#xff1a;可以在一台物理机上运行多个虚拟机&#xff0c;每个虚…

一文讲清 QWidget 大小位置

一文讲清 QWidget 大小位置 前言 ​ QWidget 的位置基于桌面坐标系&#xff0c;以左上角为原点&#xff0c;向右x轴增加&#xff0c;向下y轴增加。 一、图解 ​ ​ 如上图所示&#xff0c;当窗口为顶层窗口时&#xff08;即没有任何父窗口&#xff09;&#xff0c;系统会自…

一款基于分布式文件存储的数据库MongoDB的介绍及基本使用教程

MongoDB 是由C语言编写的&#xff0c;是一个基于分布式文件存储的开源数据库系统。 在高负载的情况下&#xff0c;添加更多的节点&#xff0c;可以保证服务器性能。 MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB 将数据存储为一个文档&#xff0c;数据结…

RocketMQ 跟踪消息发送轨迹

目录 概述实践如何启用消息轨迹配置创建Topic代码测试 结束 概述 阅读此文可以解决 RocketMQ 中消息是否发送成功&#xff0c;是否消费成功。 查询消息轨迹可作为生产环境中排查问题强有力的数据支持 &#xff0c;也是研发同学解决线上问题的重要武器之一。 详细如下&#x…

Navicat16 无限试用 亲测有效

Navicat16 无限试用 亲测有效 亲测有效&#xff01;&#xff01;&#xff01; 吐槽下&#xff0c;有的用不了&#xff0c;有的是图片&#xff0c;更甚者还有收费的&#xff0c;6的一批 粘贴下面的代码&#xff0c;保存到桌面&#xff0c;命名为 trial-navicat16.bat echo off…

DDOS攻击方式有哪些,要如何防护

DDOS攻击我们也称之为流量攻击&#xff0c;分布式拒绝服务攻击(英文意思是Distributed Denial of Service&#xff0c;简称DDOS&#xff09;于不同位置的多个攻击者同时向一个或数个目标发动攻击&#xff0c;或者一个攻击者控制了位于不同位置的多台机器并利用这些机器对受害者…