论文阅读:Lidar Annotation Is All You Need

news2024/11/25 0:52:31

目录

概要

Motivation

整体架构流程

技术细节

小结


概要

    论文重点在探讨利用点云的地面分割任务作为标注,直接训练Camera的精细2D分割。在以往的地面分割任务中,利用Lidar来做地面分割是目前采用激光雷达方案进行自动驾驶的常见手段。来自Evocargo LCC的学者认为在2D上直接做分割的标注(尤其是高精度的分割标注)是比较耗时耗力的,这会带来很多额外的成本,不利于大规模自动驾驶量产。作者提出使用3D的地面粗分割结果(例如patchwork++这种无需训练的模型)作为reference。解决了激光雷达点云的稀疏地面实况蒙版的问题。该方法的实验证明,在减轻注释负担的同时,能够保持与高质量图像分割模型相媲美的性能。

    论文方法的关键创新是masked损失,其解决了激光雷达点云中稀疏的真值masks。

    论文的贡献总结如下:

  1. 提出了一种新型的灵活且有效的图像分割方法,使用卷积神经网络和投影的激光雷达点云数据作为真值;
  2. 在若干数据集上评估了所提出的方法,将其与使用标准2D真值训练的模型进行比较,并且考虑了本文方法的细节,包括混合能力以及传感器设置的差异。

Motivation

  1. 虽然激光雷达数据提供准确的深度信息,但它们无法精确分割场景内的对象;
  2. 激光雷达测量在某些情况下的精度有限;例如,当处理透明或反射表面时,反射的激光脉冲可能会被扭曲或吸收。
  3. 减少了标注的负担,并且能够在不损失分割质量的情况下训练图像分割模型。

整体架构流程

    方法的整体流程如上图所示。它由四个主要部分组成:点云道路注释、数据准备、掩模损失和分割模型本身。首先,我们获取点云域中带有道路注释的数据。之后,我们使用齐次变换和相机参数来投影点。然后,使用投影点,获得道路地面实况和掩模,用于添加随机噪声的损失计算。来自相机的图像由分割模型处理。Masked 损失利用上一步的预测和掩码,从而允许使用稀疏的地面实况数据来训练模型。最后,经过模型训练,得到了具有分段道路的图像。训练过程以及Masked损失允许将投影的地面实况与传统的 2D掩模混合,这使得该方法在数据方面具有灵活性。  

技术细节

"Waymo full"数据集验证分割的道路分割结果(IoU 的百分比),该数据集针对在不同比率的 2D图像掩模和基于激光雷达的地面实况上训练的模型。

Waymo 开放数据集上三种模型的预测比较。从上到下:仅 2D、仅投影 3D、混合 2D + 投影 3D

    可以在训练过程中将数据集中的 2D 图像掩模与 3D 点云掩模结合起来。这种多功能性非常有价值,特别是当 3D 激光雷达点和图像的手动注释可能不切实际时(当数据集非常大时)。该方法使用两个公共数据集(Waymo 开放数据集和 KITTI-360)和一个专有数据集进行了测试,结果令人鼓舞。仅在投影激光雷达点掩模上训练的模型的性能略逊于二维掩模训练的模型,但前者的质量仍然很高,并且与后者的质量相当。在 2D 掩模和激光雷达投影组合上训练的模型的性能指标与传统的 2D 掩模模型相匹配甚至超过了传统的 2D 掩模模型,强调了这种混合方法的潜力。混合实验表明,可以将训练所需的图像量减少 50%,并在不损失预测质量的情况下增加投影3D 数据量。

小结

    在文中介绍了一种新的道路表面分割方法,其利用了标注的激光雷达点云和传统的2D图像掩膜。通过本文流程(包括点云道路标注、真值数据准备、分割神经网络和专门设计的masked损失函数),作者展示了激光雷达获得的道路masks如何使神经网络在图像分割任务中表现更好。论文方法使用较少的资源来标注来自不同类型传感器的数据。

    该方法的一个显著优势是其灵活性,它能够在训练过程中将数据集中的2D图像掩膜和3D点云掩膜相结合。这种多功能性非常有价值,尤其在3D激光雷达点云和图像的手动标注可能不切实际的情况下(当数据集非常大时)。该方法使用两个公开数据集(Waymo Open Dataset和KITTI-360)和一个专有数据集进行测试,结果非常良好。仅在投影的激光雷达点云掩膜上训练的模型的性能略低于2D掩膜训练的模型,但是前者的质量仍然很高,与后者的质量相当。在2D掩膜和激光雷达投影的组合上训练的模型的性能指标与传统的2D掩膜模型相当甚至超过2D掩膜模型,从而突出了这种混合方法的潜力。混合实验表明,可以将训练所需的图像数量减少50%,并且在不损失预测质量的情况下增加投影的3D数据数量。

    在Waymo和KITTI-360数据集上的分析结果表明,激光雷达的特性(例如图像上的点分布、距离和频率)会影响分割结果。这种可变性表明,尽管基于激光雷达的标注很重要,但是也应该考虑每个数据集的独特属性,包括硬件细节和环境变量。

    未来的研究可以使用不同的方法。增强投影的激光雷达点云的规模可能会提高覆盖范围,但是会损失一些精度。今后也能够扩展数据融合技术,利用车辆周围的多相机视角并且探索各种激光雷达设置。理解不同激光雷达之间的细微差别是至关重要的,并且需要在各种条件下(冬天和夜间场景等)测试本文方法。最后,需要额外研究将投影的激光雷达点作为输入的新型神经架构,可能会优化2D图像标注和3D激光雷达数据的组合,以增强分割。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1312154.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode Hot100 148.排序链表

题目: 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 class Solution {public ListNode sortList(ListNode head) {return sortList(head, null);}private ListNode sortList(ListNode head, ListNode tail) {if (head null)retur…

超详细 | 哈里斯鹰优化算法原理、实现及其改进与利用(Matlab/Python)

测试函数为F9 在MATLAB中执行程序结果如下: 在Python中执行程序结果如下: 哈里斯鹰优化算法(Harris Hawks Optimization , HHO)是 Heidari等[1]于2019年提出的一种新型元启发式算法,设计灵感来源于哈里斯鹰在捕食猎物过程中的合作行为以及突…

智能优化算法应用:基于原子搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于原子搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于原子搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.原子搜索算法4.实验参数设定5.算法结果6.…

【算法刷题】Day16

文章目录 1. 不同路径题干:算法原理:代码: 2. 二分查找题干:算法原理:1、暴力解法 O(n)2、二分查找算法 朴素二分模版:代码: 1. 不同路径 原题链接 题干: 机器人只能向下和向右走&a…

网络协议介绍

一、网络层 1.网络层功能 ①定义了基于IP协议的逻辑地址 ②连接不同的媒介设备 ③在网络中选择最佳路径转发数据 2.使用版本 使用的IP协议版本 ipv4 ipv6 首部长度:IP头部的长度 3.标识符 确定数据的分片是否来自于同一个文件。 4.标志 代表数据过小&…

C# WPF上位机开发(树形控件在地图软件中的应用)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 前面我们聊过图形软件的开发方法。实际上,对于绘制的图形,我们一般还会用树形控件管理一下。举个例子,一个地图…

聚观早报 |问界M9内饰爆料;滴滴乘车码上线北京

【聚观365】12月15日消息 问界M9内饰爆料 滴滴乘车码上线北京 小米汽车官方微博正式开通 网易市值超美团 华为nova 12 Ultra部分参数曝光 问界M9内饰爆料 据华为官方消息,12月26日将举办问界M9发布会。同时,余承东发布了一段问界M9的内饰视频&…

【STM32】STM32学习笔记-按键控制LED 光敏传感器控制蜂鸣器(08)

00. 目录 文章目录 00. 目录01. 按键控制LED接线图02. 按键控制LED程序示例03. 光敏传感器控制Buzzer接线图04. 有源蜂鸣器原理图05. 光敏传感器控制Buzzer示例06. 程序示例下载07. 附录 01. 按键控制LED接线图 02. 按键控制LED程序示例 led.h #ifndef __LED_H__ #define __L…

Qt 表格相关API

1.文本框 限制输入数据类型(如仅英文) QValidator* validator new QRegExpValidator(QRegExp("[a-zA-Z]"), lineText); // 创建正则表达式验证器lineText->setValidator(validator); // 将验证器设置给 QLineEdit QLineEdit:单…

岛屿数量介绍

在Java编程语言中,岛屿数量通常指的是在一个二维字符数组(grid)中,相邻的、值为1的格子数量。这个二维字符数组可能代表一个地图或一个二维平面,每个1代表一个岛屿或地形凸起,每个0代表一个海洋或平坦地区。…

HI3559AV100和FPGA 7K690T的PCIE接口调试记录-续

上文https://blog.csdn.net/fzktongyong/article/details/134963814?spm1001.2014.3001.5501 上一篇文中PCIE实测速度和理论计算有较大偏差,经过尝试后有所提升。 1、提升效果 1)、RC写操作,实测速度817MB/s(410407&…

JupyterNotebook VS JupyterLab 如果jupyter安装成功,点击jupyterlab即可进入lab环境

简介 JupyterNotebook 是一个款以网页为基础的交互计算环境,可以创建Jupyter的文档,支持多种语言,包括Python, Julia, R等等。一般来说,如果是使用R语言的话,使用Rstudio居多,使用Python的话,使…

第78讲:截取MySQL Binlog二进制日志中特定部分内容的技巧

文章目录 1.为什么要截取Binlog日志中的部分内容2.针对标识位截取Binlog日志中的部分数据2.1.以标识位号截取Binlog日志的方法2.2.截取Binlog日志中的部分数据2.3.模拟简单基于标识位的Binlog数据恢复 3.针对事件范围截取Binlog日志中的部分数据 1.为什么要截取Binlog日志中的部…

虚幻学习笔记15—C++和UI(一)

一、前言 在C可以直接创建按钮、滚轮等UI,并且可以直接绑定并处理响应事件。在创建C代码后还是需要通过蓝图来显示到应用中,总体来说还是不如直接用蓝图来的方便。 本文使用的虚幻引擎为5.2.1。 二、实现 2.1、创建UUserWidgetl类型的C类 声明两个按钮…

老杨说运维 | 年末大盘点!擎创CEO实时盘点运维大干货,不容错过

2023年即将走到尾声,对于擎创而言,这一年是颇具成长和成就的一年。我们庆幸获得了更多客户的信任,也为他们达到下一个运维阶段提供了充足的助力。 越多的实践就会带来越多新的理解和可优化的经验。这一年来,擎创在运维数据治理、智…

【PID学习笔记10】PID公式分析

写在前面 前面已经将控制系统的基础知识点过了一遍,从本节开始,将正式学习PID控制的相关知识,将会从基本的PID公式概念解释,再基于matlab仿真介绍十几种数字式PID的基本概念。本文重点讲解PID的经典公式。 一、连续与离散的概念…

Tableau进阶--Tableau数据故事慧(20)解构Tableau的绘图逻辑

官网介绍 官网连接如下: https://www.tableau.com/zh-cn tableau的产品包括如下: 参考:https://zhuanlan.zhihu.com/p/341882097 Tableau是功能强大、灵活且安全些很高的端到端的数据分析平台,它提供了从数据准备、连接、分析、协作到查阅…

【MATLAB】数据拟合第10期-二阶多项式的局部加权回归拟合算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 二阶多项式局部加权回归拟合算法是一种用于回归分析的方法,主要通过局部加权线性回归模型来实现。以下是对二阶多项式局部加权回归拟合算法的介绍: 局部加权线性回…

C# OpenCvSharp DNN 部署YOLOV6目标检测

目录 效果 模型信息 项目 代码 下载 C# OpenCvSharp DNN 部署YOLOV6目标检测 效果 模型信息 Inputs ------------------------- name:image_arrays tensor:Float[1, 3, 640, 640] -------------------------------------------------------------…

搭建个人智能家居 开篇(搭建Home Assistant)

搭建个人智能家居 开篇(搭建Home Assistant) 前言Home Assistant搭建Home AssistantUbuntu系统搭建Windows系统搭建VM安装方法VirtualBox安装方法: 配置Home Assistant控制页面 前言 随着科技的进步、发展,物联网给我们的生活带来…