class080 状压dp-上【算法】
算法讲解080【必备】状压dp-上
Code1 464. 我能赢吗
// 我能赢吗
// 给定两个整数n和m
// 两个玩家可以轮流从公共整数池中抽取从1到n的整数(不放回)
// 抽取的整数会累加起来(两个玩家都算)
// 谁在自己的回合让累加和 >= m,谁获胜
// 若先出手的玩家能稳赢则返回true,否则返回false
// 假设两位玩家游戏时都绝顶聪明,可以全盘为自己打算
// 测试链接 : https://leetcode.cn/problems/can-i-win/
package class080;
// 我能赢吗
// 给定两个整数n和m
// 两个玩家可以轮流从公共整数池中抽取从1到n的整数(不放回)
// 抽取的整数会累加起来(两个玩家都算)
// 谁在自己的回合让累加和 >= m,谁获胜
// 若先出手的玩家能稳赢则返回true,否则返回false
// 假设两位玩家游戏时都绝顶聪明,可以全盘为自己打算
// 测试链接 : https://leetcode.cn/problems/can-i-win/
public class Code01_CanIWin {
public static boolean canIWin(int n, int m) {
if (m == 0) {
// 来自题目规定
return true;
}
if (n * (n + 1) / 2 < m) {
// 如果1~n数字全加起来
// 累加和和是n * (n+1) / 2,都小于m
// 那么不会有赢家,也就意味着先手不会获胜
return false;
}
// dp[status] == 0 代表没算过
// dp[status] == 1 算过,答案是true
// dp[status] == -1 算过,答案是false
int[] dp = new int[1 << (n + 1)];
return f(n, (1 << (n + 1)) - 1, m, dp);
}
// 如果1~7范围的数字都能选,那么status的状态为:
// 1 1 1 1 1 1 1 1
// 7 6 5 4 3 2 1 0
// 0位弃而不用
// 如果1~7范围的数字,4、2已经选了不能再选,那么status的状态为:
// 1 1 1 0 1 0 1 1
// 7 6 5 4 3 2 1 0
// 0位弃而不用
// f的含义 :
// 数字范围1~n,当前的先手,面对status给定的数字状态
// 在累加和还剩rest的情况下
// 返回当前的先手能不能赢,能赢返回true,不能赢返回false
public static boolean f(int n, int status, int rest, int[] dp) {
if (rest <= 0) {
return false;
}
if (dp[status] != 0) {
return dp[status] == 1;
}
// rest > 0
boolean ans = false;
for (int i = 1; i <= n; i++) {
// 考察所有数字,但是不能选择之前选了的数字
if ((status & (1 << i)) != 0 && !f(n, (status ^ (1 << i)), rest - i, dp)) {
ans = true;
break;
}
}
dp[status] = ans ? 1 : -1;
return ans;
}
}
Code2 473. 火柴拼正方形
// 火柴拼正方形
// 你将得到一个整数数组 matchsticks
// 其中 matchsticks[i] 是第 i 个火柴棒的长度
// 你要用 所有的火柴棍 拼成一个正方形
// 你 不能折断 任何一根火柴棒,但你可以把它们连在一起,而且每根火柴棒必须 使用一次
// 如果你能拼出正方形,则返回 true ,否则返回 false
// 测试链接 : https://leetcode.cn/problems/matchsticks-to-square/
f(int status, int cur, int rest)
对于每一个没使用的火柴,(status&(1<<i))!=0
cur+nums[i]<=limit,并且不超过边长限制
if(cur+nums[i]==0)
f(status^(1<<i),0,rest-1)
else
f(status^(1<<i),cur+nums[i],rest)
package class080;
// 火柴拼正方形
// 你将得到一个整数数组 matchsticks
// 其中 matchsticks[i] 是第 i 个火柴棒的长度
// 你要用 所有的火柴棍 拼成一个正方形
// 你 不能折断 任何一根火柴棒,但你可以把它们连在一起,而且每根火柴棒必须 使用一次
// 如果你能拼出正方形,则返回 true ,否则返回 false
// 测试链接 : https://leetcode.cn/problems/matchsticks-to-square/
public class Code02_MatchsticksToSquare {
public static boolean makesquare(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum % 4 != 0) {
return false;
}
int n = nums.length;
int[] dp = new int[1 << n];
return f(nums, sum / 4, (1 << n) - 1, 0, 4, dp);
}
// limit : 每条边规定的长度
// status : 表示哪些数字还可以选
// cur : 当前要解决的这条边已经形成的长度
// rest : 一共还有几条边没有解决
// 返回 : 能否用光所有火柴去解决剩下的所有边
// 因为调用子过程之前,一定保证每条边累加起来都不超过limit
// 所以status是决定cur和rest的,关键可变参数只有status
public static boolean f(int[] nums, int limit, int status, int cur, int rest, int[] dp) {
if (rest == 0) {
return status == 0;
}
if (dp[status] != 0) {
return dp[status] == 1;
}
boolean ans = false;
for (int i = 0; i < nums.length; i++) {
// 考察每一根火柴,只能使用状态为1的火柴
if ((status & (1 << i)) != 0 && cur + nums[i] <= limit) {
if (cur + nums[i] == limit) {
ans = f(nums, limit, status ^ (1 << i), 0, rest - 1, dp);
} else {
ans = f(nums, limit, status ^ (1 << i), cur + nums[i], rest, dp);
}
if (ans) {
break;
}
}
}
dp[status] = ans ? 1 : -1;
return ans;
}
}
Code3 698. 划分为k个相等的子集
// 划分为k个相等的子集
// 给定一个整数数组 nums 和一个正整数 k,
// 找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。
// 测试链接 : https://leetcode.cn/problems/partition-to-k-equal-sum-subsets/
package class080;
import java.util.Arrays;
// 划分为k个相等的子集
// 给定一个整数数组 nums 和一个正整数 k,
// 找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。
// 测试链接 : https://leetcode.cn/problems/partition-to-k-equal-sum-subsets/
public class Code03_PartitionToKEqualSumSubsets {
// 状压dp的解法
// 这是最正式的解
public static boolean canPartitionKSubsets1(int[] nums, int k) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum % k != 0) {
return false;
}
int n = nums.length;
int[] dp = new int[1 << n];
return f1(nums, sum / k, (1 << n) - 1, 0, k, dp);
}
// 就是题目2的递归函数
public static boolean f1(int[] nums, int limit, int status, int cur, int rest, int[] dp) {
if (rest == 0) {
return status == 0;
}
if (dp[status] != 0) {
return dp[status] == 1;
}
boolean ans = false;
for (int i = 0; i < nums.length; i++) {
if ((status & (1 << i)) != 0 && cur + nums[i] <= limit) {
if (cur + nums[i] == limit) {
ans = f1(nums, limit, status ^ (1 << i), 0, rest - 1, dp);
} else {
ans = f1(nums, limit, status ^ (1 << i), cur + nums[i], rest, dp);
}
if (ans) {
break;
}
}
}
dp[status] = ans ? 1 : -1;
return ans;
}
// 纯暴力的递归(不做任何动态规划),利用良好的剪枝策略,可以做到非常好的效率
// 但这并不是正式的解,如果数据设计的很苛刻,是通过不了的
public static boolean canPartitionKSubsets2(int[] nums, int k) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum % k != 0) {
return false;
}
int n = nums.length;
Arrays.sort(nums);
return f2(new int[k], sum / k, nums, n - 1);
}
// group里面是各个集合已经有的累加和
// 随着递归的展开,group里的累加和会变化
// 所以这是一个带路径的递归,而且路径信息比较复杂(group数组)
// 无法改成动态规划,但是利用剪枝策略可以通过
// group[0....index]这些数字,填入每个集合,一定要都使用
// 每个集合的累加和一定都要是target,返回能不能做到
public static boolean f2(int[] group, int target, int[] nums, int index) {
if (index < 0) {
return true;
}
int num = nums[index];
int len = group.length;
for (int i = 0; i < len; i++) {
if (group[i] + num <= target) {
// 当前数字num放进i号集合
group[i] += num;
if (f2(group, target, nums, index - 1)) {
return true;
}
// 递归完成后将路径还原
group[i] -= num;
while (i + 1 < group.length && group[i] == group[i + 1]) {
i++;
}
}
}
return false;
}
}
Code4 P1171 售货员的难题
// 售货员的难题 - TSP问题
// 某乡有n个村庄(1<=n<=20),有一个售货员,他要到各个村庄去售货
// 各村庄之间的路程s(1<=s<=1000)是已知的
// 且A村到B村的路程,与B到A的路大多不同(有向带权图)
// 为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,
// 假设商店所在的村庄为1
// 他不知道选择什么样的路线才能使所走的路程最短
// 请你帮他选择一条最短的路
// 测试链接 : https://www.luogu.com.cn/problem/P1171
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过
package class080;
// 售货员的难题 - TSP问题
// 某乡有n个村庄(1<=n<=20),有一个售货员,他要到各个村庄去售货
// 各村庄之间的路程s(1<=s<=1000)是已知的
// 且A村到B村的路程,与B到A的路大多不同(有向带权图)
// 为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,
// 假设商店所在的村庄为1
// 他不知道选择什么样的路线才能使所走的路程最短
// 请你帮他选择一条最短的路
// 测试链接 : https://www.luogu.com.cn/problem/P1171
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
// 正常来说把MAXN改成20能通过,实现是正确的
// 问题是卡空间,而且c++的实现不卡空间,就卡java的实现
// 但如果把MAXN改成19,会有一个测试用例通过不了
// 那就差这么一点空间...看不起java是吗?
// 好,你歧视java实现,那就别怪我了
// 完全能通过的版本看Code04_TSP2的实现
public class Code04_TSP1 {
public static int MAXN = 19;
public static int[][] graph = new int[MAXN][MAXN];
public static int[][] dp = new int[1 << MAXN][MAXN];
public static int n;
public static void build() {
for (int s = 0; s < (1 << n); s++) {
for (int i = 0; i < n; i++) {
dp[s][i] = -1;
}
}
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StreamTokenizer in = new StreamTokenizer(br);
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
while (in.nextToken() != StreamTokenizer.TT_EOF) {
n = (int) in.nval;
build();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
in.nextToken();
graph[i][j] = (int) in.nval;
}
}
out.println(compute());
}
out.flush();
out.close();
br.close();
}
public static int compute() {
return f(1, 0);
}
// s : 村里走没走过的状态,1走过了不要再走了,0可以走
// i : 目前在哪个村
public static int f(int s, int i) {
if (s == (1 << n) - 1) {
// n : 000011111
return graph[i][0];
}
if (dp[s][i] != -1) {
return dp[s][i];
}
int ans = Integer.MAX_VALUE;
for (int j = 0; j < n; j++) {
// 0...n-1这些村,都看看是不是下一个落脚点
if ((s & (1 << j)) == 0) {
ans = Math.min(ans, graph[i][j] + f(s | (1 << j), j));
}
}
dp[s][i] = ans;
return ans;
}
}
package class080;
// 售货员的难题 - TSP问题
// 某乡有n个村庄(1<=n<=20),有一个售货员,他要到各个村庄去售货
// 各村庄之间的路程s(1<=s<=1000)是已知的
// 且A村到B村的路程,与B到A的路大多不同(有向带权图)
// 为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,
// 假设商店所在的村庄为1
// 他不知道选择什么样的路线才能使所走的路程最短
// 请你帮他选择一条最短的路
// 测试链接 : https://www.luogu.com.cn/problem/P1171
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
// 卡空间是吧?绕一下!
public class Code04_TSP2 {
public static int MAXN = 19;
public static int[] start = new int[MAXN];
public static int[] back = new int[MAXN];
// 这个图中,其实是不算起始村的,其他村庄彼此到达的路径长度
public static int[][] graph = new int[MAXN][MAXN];
// 不算起始村庄的
public static int[][] dp = new int[1 << MAXN][MAXN];
public static int n;
public static void build() {
for (int s = 0; s < (1 << n); s++) {
for (int i = 0; i < n; i++) {
dp[s][i] = -1;
}
}
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StreamTokenizer in = new StreamTokenizer(br);
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
while (in.nextToken() != StreamTokenizer.TT_EOF) {
n = (int) in.nval - 1;
build();
in.nextToken();
for (int i = 0; i < n; i++) {
in.nextToken();
start[i] = (int) in.nval;
}
for (int i = 0; i < n; i++) {
in.nextToken();
back[i] = (int) in.nval;
for (int j = 0; j < n; j++) {
in.nextToken();
graph[i][j] = (int) in.nval;
}
}
out.println(compute());
}
out.flush();
out.close();
br.close();
}
public static int compute() {
int ans = Integer.MAX_VALUE;
// 起始村无编号
for (int i = 0; i < n; i++) {
// 起始村 -> i号村 + i号村出发所有村子都走最终回到起始村
ans = Math.min(ans, start[i] + f(1 << i, i));
}
return ans;
}
// s : 不包含起始村的
public static int f(int s, int i) {
if (s == (1 << n) - 1) {
return back[i];
}
if (dp[s][i] != -1) {
return dp[s][i];
}
int ans = Integer.MAX_VALUE;
for (int j = 0; j < n; j++) {
if ((s & (1 << j)) == 0) {
ans = Math.min(ans, graph[i][j] + f(s | (1 << j), j));
}
}
dp[s][i] = ans;
return ans;
}
}
2023-12-01 20:09:40