ClickHouse官网文档
Flink 读取 ClickHouse 数据两种驱动
- ClickHouse 官方提供Clickhouse JDBC.【建议使用】
- 第3方提供的Clickhouse JDBC. ru.yandex.clickhouse.ClickHouseDriver
ru.yandex.clickhouse.ClickHouseDriver.现在是没有维护
ClickHouse 官方提供Clickhouse JDBC的包名:
com.clickhouse.jdbc.*
有些版本com.clickhouse.jdbc.* 包含了 ru.yandex.clickhouse.ClickHouseDriver.
因此加载包的时候一定要注意导入的包名
引入依赖
<!-- clickhouse jdbc driver -->
<dependency>
<groupId>com.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
</dependency>
使用的是 0.3 这个版本,该版本就包含上述3方CH jdbc包
<!-- CH JDBC版本推荐使用 0.3, 0.4的版本是要 JDK 17 -->
<clickhouse-jdbc.version>0.3.2-patch11</clickhouse-jdbc.version>
自定义Source
测试表映射实体类,该表仅有一个name字段
@Data
@NoArgsConstructor
@AllArgsConstructor
public class CHTestPO {
private String name;
}
Flink Clickhouse Source
public class ClickHouseSource implements SourceFunction<CHTestPO> {
private final String URL;
private final String SQL;
public ClickHouseSource(String URL, String SQL) {
this.URL = URL;
this.SQL = SQL;
}
@Override
public void run(SourceContext<CHTestPO> output) throws Exception {
// Properties是持久化的属性集 Properties的key和value都是字符串
Properties properties = new Properties();
ClickHouseDataSource clickHouseDataSource = new ClickHouseDataSource(URL, properties);
// 使用 try-with-resource 方式关闭JDBC连接 无需手动关闭
try (ClickHouseConnection conn = clickHouseDataSource.getConnection()) {
// clickhouse 通过游标的方式读取数据
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(SQL);
while (rs.next()) {
String name = rs.getString(1);
output.collect(new CHTestPO(name));
}
}
}
@Override
public void cancel() {
}
}
自定义Sink
需额外引入依赖
<!-- Flink-Connector-Jdbc -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>
</dependency>
Java 对sql语句处理的两个对象
- PreparedStatement对象:能够对预编译之后的sql语句进行处理【SQL 语句预编译:通过
占位符'?'
实现,可以防止sql注入】 - Statement对象:只能对静态的sql语句进行处理
核心代码
/**
* 使用 Flink-jdbc-connector + 批量写入 + sql语句的预编译 写入 Clickhouse
*/
public class ClickHouseJdbcSink<T> {
private final SinkFunction<T> sink;
private final static String NA = "null";
public ClickHouseJdbcSink(String sql, int batchSize, String url) {
sink = JdbcSink.sink(
sql,
// 对sql语句进行预编译
new ClickHouseJdbcStatementBuilder<T>(),
// 设置批量插入数据
new JdbcExecutionOptions.Builder().withBatchSize(batchSize).build(),
// 设置ClickHouse连接配置
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl(url)
.build()
);
}
public SinkFunction<T> getSink() {
return this.sink;
}
/**
* 对预编译之后的sql语句进行占位符替换
*
* @param ps: PreparedStatement对象 下标从 1 开始
* @param fields: clickhouse表PO对象的属性字段
* @param object: clickhouse表PO对象的属性字段所对应的数据类型
*/
public static void setPreparedStatement(
PreparedStatement ps,
Field[] fields,
Object object) throws IllegalAccessException, SQLException {
// 遍历 Field[]
for (int i = 1; i <= fields.length; i++) {
// 取出每个Field实例
Field field = fields[i - 1];
// 指示反射的对象在使用时应该取消 Java 语言访问检查
field.setAccessible(true);
// 通过Field实例的get方法返回指定的对象
Object o = field.get(object);
if (o == null) {
ps.setNull(i, 0);
continue;
}
// 这里统一设为字符型
String fieldValue = o.toString();
// 变量和常量的比较,通常将常量放前,可以避免空指针
if (!NA.equals(fieldValue) && !"".equals(fieldValue)) {
// 替换对应位置的占位符
ps.setObject(i, fieldValue);
} else {
ps.setNull(i, 0);
}
}
}
}
对sql语句进行预编译
@Slf4j
public class ClickHouseJdbcStatementBuilder<T> implements JdbcStatementBuilder<T> {
@Override
public void accept(PreparedStatement preparedStatement, T t) throws SQLException {
/* **********************
* Java通过反射获取类的字段:
*
* 1. getDeclaredFields():获取所有的字段,不会获取父类的字段
* 2. getFields(): 只能会public字段,获取包含父类的字段
*
* *********************/
Field[] fields = t.getClass().getDeclaredFields();
// 将获取到的字段替换sql预编译之后的占位符。
try {
ClickHouseJdbcSink.setPreparedStatement(preparedStatement, fields, t);
} catch (IllegalAccessException e) {
log.error("sql 预编译失败", e);
e.printStackTrace();
}
}
}
ClickHouse读写工具类
public class ClickHouseUtil {
private static final String URL;
static {
ParameterTool parameterTool = ParameterUtil.getParameters();
URL = parameterTool.get("clickhouse.url");
}
/**
* 读取clickhouse
*/
public static DataStream<CHTestPO> read(StreamExecutionEnvironment env, String sql) {
return env.addSource(new ClickHouseSource(URL, sql));
}
/**
* 批量写入ClickHouse
*/
public static <T> DataStreamSink<T> batchWrite(
DataStream<T> dataStream,
String sql,
int batchSize) {
//生成 SinkFunction
ClickHouseJdbcSink<T> clickHouseJdbcSink =
new ClickHouseJdbcSink<T>(sql, batchSize, URL);
return dataStream.addSink(clickHouseJdbcSink.getSink());
}
}
测试一下
public class ClickHouseUtilTest {
@DisplayName("测试Flink+jdbc+游标读取Clickhouse")
@Test
void testRead() throws Exception {
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
// 设置并行度1
env.setParallelism(1);
// 从default数据库的user表中读取数据
String sql = "select * from default.user";
DataStream<CHTestPO> ds = ClickHouseUtil.read(env, sql);
// 打印数据流中的元素
ds.print("clickhouse");
// 执行程序
env.execute();
}
@DisplayName("测试Flink-Connector-jdbc+预编译批量写入Clickhouse")
@Test
void testBatchWrite() throws Exception {
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
// 设置并行度1
env.setParallelism(1);
CHTestPO po = new CHTestPO();
po.setName("Lucy");
CHTestPO po1 = new CHTestPO();
po1.setName("Jack");
DataStream<CHTestPO> ds = env.fromCollection(Arrays.asList(po, po1));
// 定义将数据写入ClickHouse数据库的SQL语句
String sql = "insert into default.user(name) values(?)";
// 调用ClickHouseUtil的batchWrite方法将数据流ds中的数据批量写入ClickHouse数据库
ClickHouseUtil.batchWrite(ds, sql, 2);
// 执行程序
env.execute();
}
}
此时表中仅一行记录
读取没有问题!
写入没有问题!