互联网加竞赛 LSTM的预测算法 - 股票预测 天气预测 房价预测

news2025/1/23 8:12:27

0 简介

今天学长向大家介绍LSTM基础

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

    
    future_target = 72
    x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,
                                                     TRAIN_SPLIT, past_history,
                                                     future_target, STEP)
    x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],
                                                 TRAIN_SPLIT, None, past_history,
                                                 future_target, STEP)

划分数据集

    
​    train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
​    train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
​    

    val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
    val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()


  

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
​        plt.figure(figsize=(12, 6))
​        num_in = create_time_steps(len(history))
​        num_out = len(true_future)
​    

        plt.plot(num_in, np.array(history[:, 1]), label='History')
        plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',
               label='True Future')
        if prediction.any():
            plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',
                     label='Predicted Future')
        plt.legend(loc='upper left')
        plt.show()
    for x, y in train_data_multi.take(1):
      multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

    
​    multi_step_model = tf.keras.models.Sequential()
​    multi_step_model.add(tf.keras.layers.LSTM(32,
​                                              return_sequences=True,
​                                              input_shape=x_train_multi.shape[-2:]))
​    multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
​    multi_step_model.add(tf.keras.layers.Dense(72))
​    

    multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

    
    multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                              steps_per_epoch=EVALUATION_INTERVAL,
                                              validation_data=val_data_multi,
                                              validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import tensorflow as tf
    plt.rcParams['font.sans-serif']=['SimHei']#显示中文
    plt.rcParams['axes.unicode_minus']=False#显示负号


def load_data():
test_x_batch = np.load(r’test_x_batch.npy’,allow_pickle=True)
test_y_batch = np.load(r’test_y_batch.npy’,allow_pickle=True)
return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):
    cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanh
    return cell

#定义lstm网络
def lstm_net(x,w,b,num_neurons):
    #将输入变成一个列表,列表的长度及时间步数
    inputs = tf.unstack(x,8,1)
    cells = [lstm_cell(units=n) for n in num_neurons]
    stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)
    outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)
    return tf.matmul(outputs[-1],w) + b

#超参数
num_neurons = [32,32,64,64,128,128]

#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))

#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)

#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())

if __name__ == '__main__':

    #开启交互式Session
    sess = tf.InteractiveSession()
    saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')

    #载入数据
    test_x,test_y = load_data()

    #预测
    predicts = sess.run(pred,feed_dict={x:test_x})
    predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准

    #可视化
    plt.plot(predicts,'r',label='预测曲线')
    plt.plot(test_y,'g',label='真实曲线')
    plt.xlabel('第几天/days')
    plt.ylabel('开盘价(归一化)')
    plt.title('股票开盘价曲线预测(测试集)')
    plt.legend()
	plt.show()
    #关闭会话
    sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

    
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import torch
    import torch.nn as nn
    from sklearn.preprocessing import MinMaxScaler
    import os


# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4 # 序列长度
n_feature = 12 # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。

# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)
 
trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):
    tmp_x = data[i:i+seq_length, :]
    tmp_y = data[i+seq_length, :]
    trainData_x.append(tmp_x)
    trainData_y.append(tmp_y)
 
# model
class Net(nn.Module):
    def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):
        super(Net, self).__init__()
        self.in_dim = in_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.n_layer = n_layer
        self.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)
        self.linear = nn.Linear(hidden_dim, output_dim)
 
    def forward(self, x):
        _, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state
                                      # h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)
                                      # n_direction根据是“否为双向”取值为1或2
        h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)
        h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)
        return h_out
 
train = True
if train:
    model = Net()
    loss_func = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    # train
    for epoch in range(EPOCH):
        total_loss = 0
        for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)
            X = torch.tensor(X).float()
            X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsize
            output = model(X)       # output's shape (1,12)
            output = torch.squeeze(output)
            loss = loss_func(output, torch.tensor(trainData_y[iteration]))
            optimizer.zero_grad()   # clear gradients for this training iteration
            loss.backward()         # computing gradients
            optimizer.step()        # update weights
            total_loss += loss
 
        if (epoch+1) % 20 == 0:
            print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))
    # torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825
    torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')
 
else:
    # model = torch.load('flight_model.pth')
    model = Net()
    checkpoint = torch.load('checkpoint.pth.tar')
    model.load_state_dict(checkpoint['state_dict'])
 
# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)
    X = torch.tensor(X).float()
    X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsize
    output = model(X)             # output's shape (1,12)
    output = torch.squeeze(output)
    predict.append(output.data.numpy())
 
# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')
 
data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')
 
plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1305543.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32——串口实验(非中断)

需求: 接受串口工具发送的字符串,并将其发送回串口工具。 硬件接线: TX -- A10 RX -- A9 一定要记得交叉接线!! 串口配置: 1. 选定串口 2. 选择模式 异步通讯 3. 串口配置 4. 使用MicroLIB库 从…

PaddleOCR:超越人眼识别率的AI文字识别神器

在当今人工智能技术已经渗透到各个领域。其中,OCR(Optical Character Recognition)技术将图像中的文字转化为可编辑的文本,为众多行业带来了极大的便利。PaddleOCR是一款由百度研发的OCR开源工具,具有极高的准确率和易…

PyQt6 QStatusBar状态栏控件

锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计44条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话版…

漂亮的WPF界面 流行的一个界面,向上悬浮的窗口,终于试成功了

目前随便打开个APP,就可以看到一个悬浮的窗口 今天测试一下目前流行的一个界面,向上悬浮的窗口,终于试成功了。看着还不错的。

【无标题】树莓派 4B 多串口配置

0. 实验准备以及原理 0.1 实验准备 安装树莓派官方系统的树莓派 4B,有 python 环境,安装了 serial 库 杜邦线若干 屏幕或者可以使用 VNC 进入到树莓派的图形界面 0.2 原理 树莓派 4B 有 UART0(PL011)、UART1(mini UAR…

AI 绘画快速开始-StableDiffusionWebui

文章目录 介绍WebUI 的安装和部署参数介绍Prompt技巧初阶Prompt:直接描述的精细化二阶Prompt:巧用标签的扩展三阶Prompt:负面提示词的深入应用四阶Prompt:文本权重调整的细化引入 LoRA:模型特效的创新应用 案例-生成漫…

Armv8/Armv9从入门到精通-课程介绍

通知,Arm二期,咱们也有大合集PDF了,共计1587页,还未完成,后续持续更新和优化中。为了方便大家阅读、探讨、做笔记,特意整了此合集PPT,为了增加标签目录,还特意开了福兮阅读器会员。 …

Aduino实现音频频谱效果

看到这样一个效果,于是想用arduino实现类似效果。需要的组件如下 1 arduino开发板 2 音频传感器 3 灯带 接线图如图 代码如下 #include <EEPROM.h>#include <Adafruit_NeoPixel.h>#define PIN 2 // input pin Neopixel is attached to#define NUMPIXELS …

优雅玩转实验室服务器(三)vscode is all you need

在前两章解决了传输问题和连接问题后&#xff0c;我们紧接着遇到一个新的需求&#xff1a;我们需要coding呀&#xff0c;你当然可以说&#xff0c;我们可以用vim和对应的插件来搭建一个IDE呀&#xff0c;fine&#xff0c;我甚至可以给你推荐如下的教程&#xff1a; Vim 到底可…

Java - Math类的常用方法及练习

目录 1.1 概述 1.2 常用方法 ❓面试题&#xff1a;为啥Math.round(-1.5)-1? 1.1 概述 java.lang.Math 类包含用于执行基本数学运算的方法&#xff0c;如初等指数、对数、平方根和三角函数。类似这样的工具类&#xff0c;其所有方法均为静态方法&#xff0c;并且不会创建对象…

包装类 和 初阶泛型(详解)

【本节目标】 1. 以能阅读 java 集合源码为目标学习泛型 2. 掌握包装类 3. 掌握泛型 1. 包装类 在Java中&#xff0c;由于基本类型不是继承自Object&#xff0c;为了在泛型代码中可以支持基本类型&#xff0c;Java给每个基本类型都对应了一个包装类型。 除了Integer和Charact…

MySQL笔记-第08章_聚合函数

视频链接&#xff1a;【MySQL数据库入门到大牛&#xff0c;mysql安装到优化&#xff0c;百科全书级&#xff0c;全网天花板】 文章目录 第08章_聚合函数1. 聚合函数介绍1.1 AVG和SUM函数1.2 MIN和MAX函数1.3 COUNT函数 2. GROUP BY2.1 基本使用2.2 使用多个列分组2.3 GROUP BY中…

云音乐大模型 Agent 探索实践

一. 前言 本篇文章介绍了大语言模型时代下的 AI Agent 概念&#xff0c;并以 LangChain 为例详细介绍了 AI Agent 背后的实现原理&#xff0c;随后展开介绍云音乐在实践 AI Agent 过程中的遇到的问题及优化手段。通过阅读本篇文章&#xff0c;读者将掌握业界主流的 AI Agent 实…

【C进阶】C程序是怎么运作的呢?-- 程序环境和预处理(下)

前言&#xff1a; 这是程序环境和预处理的下半篇文章。至此&#xff0c;关于c语言知识点:从编译到运行的过程已讲解完毕。传送&#x1f6aa;&#xff0c;上半篇&#xff1a; http://t.csdnimg.cn/hvxmr 本章涉及的知识点&#xff1a; 宏和函数对比、命名约定、#undef、命令行定…

【算法每日一练]-结构优化(保姆级教程 篇5 树状数组)POJ3067日本 #POJ3321苹果树 #POJ2352星星 #快排变形

目录 今天知识点 求交点转化求逆序对&#xff0c;每次操作都维护一个y点的前缀和 树的变动转化成一维数组的变动&#xff0c;利用时间戳将节点转化成区间 离散化数组来求逆序对数 先将y排序&#xff0c;然后每加入一个就点更新求一次前缀和 POJ3067&#xff1a;日本 思路&…

关于学习计算机的心得与体会

也是隔了一周没有发文了&#xff0c;最近一直在准备期末考试&#xff0c;后来想了很久&#xff0c;学了这么久的计算机&#xff0c;这当中有些收获和失去想和各位正在和我一样在学习计算机的路上的老铁分享一下&#xff0c;希望可以作为你们碰到困难时的良药。先叠个甲&#xf…

scala编码

1、Scala高级语言 Scala简介 Scala是一门类Java的多范式语言&#xff0c;它整合了面向对象编程和函数式编程的最佳特性。具体来讲Scala运行于Java虚拟机&#xff08;JVM)之上&#xff0c;井且兼容现有的Java程序&#xff0c;同样具有跨平台、可移植性好、方便的垃圾回收等特性…

大数据技术6:大数据技术栈

前言&#xff1a;大数据相关的技术名词特别多&#xff0c;这些技术栈之间的关系是什么&#xff0c;对初学者来说很难找到抓手。我一开始从后端转大数据的时候有点懵逼&#xff0c;整体接触了一遍之后才把大数据技术栈给弄明白了。 一、大数据技术栈 做大数据开发&#xff0c;无…

12.12作业

头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent> #include <QTime> #include <QtTextToSpeech>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECT…

Linux:gdb的简单使用

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《Linux》 文章目录 前言一、前置理解二、使用总结 前言 gdb是Linux中的调试代码的工具 一、前置理解 我们都知道要调试一份代码&#xff0c;这份代码的发布模式必须是debug。那你知道在li…