人工智能数据集可视化统计分析工具:快速了解你的数据集

news2024/11/18 19:38:59

人工智能数据集可视化统计分析工具:快速了解你的数据集

    • 简介
    • 特征
    • 示例报告
    • 安装
    • 用法

简介

Lightly Insights:可以轻松获取关于机器学习数据集基本洞察的工具,可以可视化图像数据集的基本统计信息,仅需提供一个包含图像和对象检测标签的文件夹,它会生成一个包含指标和图表的静态 HTML 网页。

[1] 详细内容请参阅 MarkAI Blog
[2] 更多资料请参阅 MarkAI Github

特征

  • 支持所有可以使用Labelformat包读取的对象检测标签格式。其中包括 YOLO、COCO、KITTI、PascalVOC、Lightly 和 Labelbox。
  • 显示图像、对象和类别计数
  • 分析有多少图像没有标签,并提供它们的文件名。
  • 显示图像样本
  • 显示图像和物体尺寸的分析
  • 显示每个类的分析,包括对象大小、每个图像的计数、位置热图等。

示例报告

请添加图片描述
请添加图片描述
请添加图片描述

安装

pip install lightly-insights

用法

Lightly Insights 报告由 python 脚本生成。下面的示例使用PascalVOC 2007数据集。您可以按照示例下载它(~450MB):

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtrainval_06-Nov-2007.tar

要运行 Lightly Insights,我们需要提供:

  • 图片文件夹。在我们的例子中就是./VOCdevkit/VOC2007/JPEGImages。
  • 物体检测标签。对于 PascalVOC,构造函数需要带有注释 ./VOCdevkit/VOC2007/Annotations和类列表的文件夹。

from pathlib import Path
from labelformat.formats import PascalVOCObjectDetectionInput
from lightly_insights import analyze, present

# Analyze an image folder.
image_analysis = analyze.analyze_images(
    image_folder=Path("./VOCdevkit/VOC2007/JPEGImages")
)

# Analyze object detections.
label_input = PascalVOCObjectDetectionInput(
    input_folder=Path("./VOCdevkit/VOC2007/Annotations"),
    category_names=(
        "person,bird,cat,cow,dog,horse,sheep,aeroplane,bicycle,boat,bus,car,"
        + "motorbike,train,bottle,chair,diningtable,pottedplant,sofa,tvmonitor"
    )
)
od_analysis = analyze.analyze_object_detections(label_input=label_input)

# Create HTML report.
present.create_html_report(
    output_folder=Path("./html_report"),
    image_analysis=image_analysis,
    od_analysis=od_analysis,
)

要查看报告,请打开./html_report/index.html.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1302771.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自编码器 AutoEncoder

自编码器(AutoEncoder),也称自编码模型,是一种基于无监督学习的数据维度压缩和特征表示方法,目的是对一组数据学习出一种表示。1986年 Rumelhart 提出自编码模型用于高维复杂数据的降维。由于自动编码器通常应用于无监…

建筑学VR虚拟仿真情景实训教学

首先,建筑学VR虚拟仿真情景实训教学为建筑学专业的学生提供了一个身临其境的学习环境。通过使用VR仿真技术,学生可以在虚拟环境中观察和理解建筑结构、材料、设计以及施工等方面的知识。这种教学方法不仅能帮助学生更直观地理解复杂的建筑理论&#xff0…

SpringData JPA 搭建 xml的 配置方式

1.导入版本管理依赖 到父项目里 <dependencyManagement><dependencies><dependency><groupId>org.springframework.data</groupId><artifactId>spring-data-bom</artifactId><version>2021.1.10</version><scope>…

软文开头怎么写才能拿捏用户?媒介盒子为您解答

软文标题是吸引用户点击的关键因素&#xff0c;那软文开头就是决定用户能否读下去的主要因素&#xff0c;很多运营er在写文案时经常会面临的情况之一就是好不容易想到一个标题&#xff0c;点击率不错&#xff0c;但是开头不行用户一看开头&#xff0c;跑了&#xff01;如果不知…

Git篇---第三篇

系列文章目录 文章目录 系列文章目录前言一、git pull 和 git fetch 有什么区别?二、git中的“staging area”或“index”是什么?三、什么是 git stash?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章…

c#读取XML文件实现晶圆wafermapping显示demo计算电机坐标控制电机移动

c#读取XML文件实现晶圆wafermapping显示 功能&#xff1a; 1.读取XML文件&#xff0c;显示mapping图 2.在mapping视图图标移动&#xff0c;实时查看bincode,x,y索引与计算的电机坐标 3.通过设置wafer放在平台的位置x,y轴电机编码值&#xff0c;相机在wafer的中心位置&#…

C# 任务的异常和延续处理

写在前面 当Task在执行过程中出现异常或被取消等例外的情况时&#xff0c;为了让执行流程能够继续进行&#xff0c;可以使用延续方法实现这种链式处理&#xff1b;还可以针对前置任务不同的执行结果&#xff0c;选择执行不同的延续分支方法。子任务执行过程中的任何异常都会被…

Centos7云服务器上安装cobalt_strike_4.7。附cobalt_strike_4.7安装包

环境这里是阿里的一台Centos7系统。 开始安装之前首先要确保自己安装了java11及以上环境。 安装java11步骤&#xff1a; sudo yum update sudo yum install java-11-openjdk-devel把服务器端&#xff08;CS工具分服务器端和客户端&#xff09;的CS安装到服务器上后给目录下的…

OpenEuler_22.03升级mongdb到7.0.4

使用命令&#xff1a;lscpu&#xff0c;查看cpu架构为aarch64为arm架构的一种执行状态。 所以我们直接下载arm的包安装即可。无需自己编译源码。 下载地址&#xff1a;https://www.mongodb.com/try/download/community 下载解压 wget https://fastdl.mongodb.org/linux/mong…

【LVGL】STM32F429IGT6(在野火官网的LCD例程上)移植LVGL官方的例程(还没写完,有问题 排查中)

这里写目录标题 前言一、本次实验准备1、硬件2、软件 二、移植LVGL代码1、获取LVGL官方源码2、整理一下&#xff0c;下载后的源码文件3、开始移植 三、移植显示驱动1、enable LVGL2、修改报错部分3、修改lv_config4、修改lv_port_disp.c文件到此步遇到的问题 Undefined symbol …

C语言中的一维数组与二维数组

目录 一维数组数组的创建初始化使用在内存中的存储 二维数组创建初始化使用在内存中的存储 数组越界 一维数组 数组的创建 数组是一组相同类型元素的集合。 int arr1[10]; char arr3[10]; float arr4[10]; double arr5[10];下面这个数组能否成功创建&#xff1f; int count…

python简易学生管理 + MySQL

数据库表 Python代码部分 import pymysqlclass StMgmt(object):def tips(self):"""提示用户选择的操作"""print("""学生管理系统 1.01.查看所有信息2.查看学生信息3.修改学生信息4.增加学生信息5.退出学生系统"""…

SPI 通信-stm32入门

本节我们将继续学习下一个通信协议 SPI&#xff0c;SPI 通信和我们刚学完的 I2C 通信差不多。两个协议的设计目的都一样&#xff0c;都是实现主控芯片和各种外挂芯片之间的数据交流&#xff0c;有了数据交流的能力&#xff0c;我们主控芯片就可以挂载并操纵各式各样的外部芯片&…

C语言-枚举

常量符号化 用符号而不是具体的数字来表示程序中的数字 枚举 用枚举而不是定义独立的const int变量 枚举是一种用户定义的数据类型&#xff0c;他用关键词enum以如下语法来声明&#xff1a; enum枚举类型名字{名字0&#xff0c;…&#xff0c;名字n}&#xff1b; 枚举类型名…

Q_GDW1819-2013电压监测装置协议结构解析

目录 一 专业术语二 基本功能2.1 基础功能2.2 数据存储2.3 显示功能&#xff08;设备能够看到的&#xff09;2.4 参数设置与查询2.5 事件检测与告警功能 三 其他内容3.1 通信方式3.2 通信串口 四 帧结构解析4.1 传输方式4.2 数据帧格式4.2.1 报文头&#xff08;2字节&#xff0…

《深入理解计算机系统》学习笔记 - 第四课 - 浮点数

Floating Point 浮点数 文章目录 Floating Point 浮点数分数二进制示例能代表的数浮点数的表示方式浮点数编码规格化值规格化值编码示例 非规格化的值特殊值 示例IEEE 编码的一些特殊属性四舍五入&#xff0c;相加&#xff0c;相乘四舍五入四舍五入的模式二进制数的四舍五入 浮…

如何通过SPI控制Peregrine的数控衰减器

概要 Peregrine的数控衰减器PE4312是6位射频数字步进衰减器(DSA,Digital Step Attenuator)工作频率覆盖1MHz~4GHz,插入损耗2dB左右,衰减步进0.5dB,最大衰减量为31.5dB,高达59dBm的IIP3提供了良好的动态性能,切换时间0.5微秒,供电电源2.3V~5.5V,逻辑控制兼容1.8V,20…

【Python】修改pip 默认安装位置

使用pip安装的时候&#xff0c;一般是默认安装在c盘里的。这样做很容易会让c盘的文件堆满。那么如何让pip安装的包放入d盘呢&#xff1f; 查看pip默认安装的位置 在cmd里输入python -m site&#xff0c;这里可以看到&#xff0c;安装包会默认下载到c盘中 从这里可以看到&am…

openGauss学习笔记-152 openGauss 数据库运维-备份与恢复-物理备份与恢复之PITR恢复

文章目录 openGauss学习笔记-152 openGauss 数据库运维-备份与恢复-物理备份与恢复之PITR恢复152.1 背景信息152.2 前提条件152.3 PITR恢复流程152.4 recovery.conf文件配置**152.4.1 归档恢复配置****152.4.2 恢复目标设置** openGauss学习笔记-152 openGauss 数据库运维-备份…

AICore 带来了 Android 专属的 AI 能力,它要解决什么?采用什么架构思路?

前言 Google 最近发布的 Gemini 模型在全球引起了巨大反响&#xff0c;其在多模态领域的 Video demo 无比震撼。对于 Android 开发者而言&#xff0c;其中最振奋人心的消息莫过于 Gemini Nano 模型将内置到 Android 系统当中&#xff0c;并开放给开发者使用。 事实上&#xf…