【Linux】地址空间

news2024/12/30 3:21:42

在这里插入图片描述
本片博客将重点回答三个问题
什么是地址空间?
地址空间是如何设计的?
为什么要有地址空间?
程序地址空间排布图
在32位下,一个进程的地址空间,取值范围是0x0000 0000~ 0xFFFF FFFF
在这里插入图片描述
回答三个问题之前我们先来证明地址空间排布是按如图所布局的
各个区空间地址验证代码

#include <unistd.h>
#include <stdio.h>                                                                                           
#include <stdlib.h>

int g_unval; // 未初始化数据
int g_val = 100; // 初始化数据,一般指全局初始化数据
int main(int argc, char* argv[], char* env[]) // 命令行参数,环境变量
{
	// 代码地址打印                          
    printf("code addr: %p\n", main); 
    printf("init global addr: %p\n", &g_val);
    printf("uninit global addr: %p\n", &g_unval);
    
    // 堆区,指针变量本质是变量,也要开辟空间,不过放的内容是地址
    char *heap_mem = (char*)malloc(10);
    printf("heap addr: %p\n", heap_mem);
    
    // 栈区,函数内定义的变量都是在栈上开辟空间
    printf("stack addr: %p\n", &heap_mem); 
     
    int i = 0;
    for (i = 0; i < argc; i++)
    {	
    	// 命令行参数地址	
        printf("argv[%d]: %p\n", i, argv[i]);
    }
    int j = 0;
    for (j  = 0; env[j]; j++)
    {
        printf("env[%d]: %p\n", j, env[j]);
    }
    return 0;
 }

运行结果
在这里插入图片描述
堆、栈之间的两个箭头表示
栈向地址减小的方向增长
堆向地址增大的方向增长
在这里插入图片描述
证明方法也很简单
在这里插入图片描述
运行结果也证明确实是这样
我们会发现堆区之间差了20字节
我们平时申请空间,系统会多给你一些空间
多出的空间用来记录你堆的属性信息
所以平时我们free空间,只要传起始地址
剩下的系统知道要free多长的空间
在这里插入图片描述

我们在系统部分要记的两个口诀
1、先描述在组织
2、堆、栈相对而生

static 修饰局部变量,本质就是将该变量开辟在全局区域

所有的字面常量将来都是要映编码进代码的
在正文代码上其实有一小段是字符常量区
在这里插入图片描述

什么是地址空间以及是如何设计的

我们平时打印各种地址其实就是进程打印,程序运行之后打印的

在解释什么是地址空间之前,我们先来讲一个故事

有一个富豪,他有5亿元家产
他有3个私生子,彼此并不知道对方存在
3个私生子分别叫张三、李四、王五
富豪为了鼓励3个儿子
对张三说你好好念书将来5亿就是你的了
对另外两个儿子也说了同样的话

因为不知道彼此存在
对于这三个儿子,他们都认为是5亿继承人
富豪给他们每一个儿子画了一个大饼

有一天,张三对他爸说要1千买学习资料
李四说我成年了想买一辆两百万的跑车
王五说我创业需要50万
富豪都给了他们需要的钱
只要他们要钱富豪都会给
有一天张三说要1亿,富豪说要这么多干嘛
拒绝了张三,即使被拒绝了张三依旧认为自己是5亿的继承人
我们站在上帝视角知道即使富豪过世了
这三个儿子不可能都拥有5亿
他们每个儿子可以断断续续的要钱
但永远要不到5亿,却依然坚信自己以后能拥有这5亿

对应关系
富豪 ---- 操作系统
儿子 ---- 进程
富豪画的饼 ---- 地址空间

在内存中的地址空间本质是一种数据结构
将来要和一个特定的进程关联起来

以前直接访问物理内存,如果有野指针的问题
可能直接访问到其他进程
内存本身是随时可以被读写
所以在老式的程序里面野指针是会直接改了其他进程的东西
结论:直接使用物理内存不安全

现代计算机的解决方式

每个进程有自己的PCB
操作系统给每个进程一个虚拟的地址空间
通过映射机制映射到物理内存
我们可能会有疑问,最终还是会访问物理内存
万一虚拟地址是一个非法地址呢
其实映射机制有一个检查机制,万一是非法地址
可以不让你映射

在这里插入图片描述

虚拟地址空间究竟是什么?

每个进程都要有地址空间
就好比操作系统要给每个进程画个饼
操作系统要给每个饼做管理
在内存中的地址空间本质是一种内核数据结构
它里面至少有各个区域的划分
在这里插入图片描述
我们把如图结构称为地址空间

区域空间并不是死的,会有一定的变化
所谓的范围变化,本质是对start 或end 标记值 + - 特定的范围即可
在这里插入图片描述
所以一个地址为什么有两个值
到这里就可以回答这个问题了

刚开始创建时只有父进程
然后创建子进程,子进程会继承父进程的属性
所以子进程的页表、地址空间和父进程一样
当子进程尝试修改变量值时
因为要保证进程的独立性
操作系统会重新为子进程,开辟一份物理内存
并修改子进程页表的映射关系
但是虚拟地址并不受影响,还是一样的地址
但映射到物理内存的不同区域
看到的值便不一样
这种策略就叫作写时拷贝

在这里插入图片描述

为什么要存在地址空间

  1. 保护物理内存
    凡是非法的访问或者映射,
    os都会识别到,并且终止你这个进程
    因为地址空间和页表是os创建并维护的
    也就意味着凡是想使用地址空间和页表
    进行映射,也一定要在OS的监管下进行访问
  2. OS耦合度更低
    因为有地址空间的存在
    因为有页表映射的存在
    我们的物理内存就可以
    对未来的数据进行任意位置的加载
    物理内存的分配就可以和
    进程的管理互不关联
    从而使内存管理模块和进程管理模块
    完成解耦合

我们在C、C++语言上new、malloc空间时
本质是在虚拟地址空间申请的
因为有地址空间的存在,所以上层申请空间
物理内存可以甚至一个字节都不给你
当你真正访问物理地址时,才执行
内存相关算法,帮你申请内存,构建
页表映射关系,这样空间使用率为100%
以此提高整机效率

  1. 保证进程的独立性
    因为有地址空间的存在,每一个进程
    都认为自己拥有4GB的空间(32)
    并且各个区域是有序的,进而
    可以通过页表映射到不同的区域
    来实现进程的独立性,每一个进程
    不知道,也不需要知道其他进程的存在

重新理解什么是挂起?

加载的本质就是创建进程,但并不是
非得把所有程序的代码和数据加载到
内存中,并创建内核数据结构建立映射关系
在极端情况下,只有内核结构被创建
此时就叫新建状态

理论上,可以实现对程序的分批加载
既然可以分批加载,自然可以分批换出
一个进程短时间不会被执行,比如阻塞
而使进程的数据和代码被换出就叫挂起

页表不仅仅映射物理内存
磁盘位置也可以映射
所以当代码挂起时,不用把数据
刷新到磁盘里。只要把空间直接释放掉,
在页表重新填上磁盘当中代码和数据的
位置,就可以完成一次基本的挂起

扩展知识

在vim中注释
Ctrl + v 进入视图模式(V-BLOCK)
hjkl 选中需要注释代码
输入大写的i,左下角出现INSERT
输入 // ,再按esc 自动注释选中的代码
取消注释还是上面的操作
选中需要注释的代码,按d删除

✨✨✨✨✨
本篇博客完,感谢阅读🌹🌹🌹
如有错误之处可评论指出,博主会耐心听取每条意见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1302662.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

openlayers-19-分屏对比

分屏对比实现很简单&#xff0c;定义两个map对象&#xff0c;然后让这两个map对象共用一个view即可。 代码如下&#xff1a; <!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd…

Linux上编译和测试V8引擎源码

介绍 V8引擎是一款高性能的JavaScript引擎&#xff0c;广泛应用于Chrome浏览器和Node.js等项目中。在本篇博客中&#xff0c;我们将介绍如何在Linux系统上使用depot_tools工具编译和测试V8引擎源码。 步骤一&#xff1a;安装depot_tools depot_tools是一个用于Chromium开发…

【深度学习】强化学习(五)深度强化学习

文章目录 一、强化学习问题1、交互的对象2、强化学习的基本要素3、策略&#xff08;Policy&#xff09;4、马尔可夫决策过程5、强化学习的目标函数6、值函数7、深度强化学习1. 背景与动机2. 关键要素3. 成功案例4. 挑战和未来展望5. 核心概念和方法总结 一、强化学习问题 强化学…

微服务网关组件Gateway实战

1. 需求背景 在微服务架构中&#xff0c;通常一个系统会被拆分为多个微服务&#xff0c;面对这么多微服务客户端应该如何去调用呢&#xff1f;如果根据每个微服务的地址发起调用&#xff0c;存在如下问题&#xff1a; 客户端多次请求不同的微服务&#xff0c;会增加客户端代码…

【LLM】大模型之RLHF和替代方法(DPO、RAILF、ReST等)

note SFT使用交叉熵损失函数&#xff0c;目标是调整参数使模型输出与标准答案一致&#xff0c;不能从整体把控output质量&#xff0c;RLHF&#xff08;分为奖励模型训练、近端策略优化两个步骤&#xff09;则是将output作为一个整体考虑&#xff0c;优化目标是使模型生成高质量…

如何在Linux本地部署openGauss开源数据管理系统并结合内网穿透公网访问

文章目录 前言1. Linux 安装 openGauss2. Linux 安装cpolar3. 创建openGauss主节点端口号公网地址4. 远程连接openGauss5. 固定连接TCP公网地址6. 固定地址连接测试 前言 openGauss是一款开源关系型数据库管理系统&#xff0c;采用木兰宽松许可证v2发行。openGauss内核深度融合…

恢复Django 项目

随笔记录 目录 1. 重建Mysql DB 2. 启动Django 项目 2.1 确保你的系统上已安装pip工具。你可以使用以下命令来检查pip是否已安装 2.2 安装Packages 2.2.1 安装Django 2.2.2 安装pymysql 2.2.3 安装 kafka 2.2.4 安装 requests 2.2.5 安装simplepro 2.2.6 安装libjp…

作为一个产品经理带你了解Axure的安装和基本使用

1.Axure的简介 Axure是一种强大的原型设计工具&#xff0c;它允许用户创建交互式的、高保真度的原型&#xff0c;以及进行用户体验设计和界面设计。Axure可以帮助设计师和产品经理快速创建和共享原型&#xff0c;以便团队成员之间进行沟通和反馈。Axure提供了丰富的交互组件和功…

体系化学习运筹学基础算法的实践和总结

文章目录 引言目标设计目标实践文章汇总经验总结一则预告 引言 眨眼间已经12月了&#xff0c;眼看着2023年马上要过完了。 女朋友最近总说&#xff0c;工作以后感觉时间过的好快。事实上&#xff0c;我也是这么认为的。年纪越大&#xff0c;越会担心35岁危机的降临。所以&…

Rocket MQ 架构介绍

文章目录 为什么选择Rocket MQ基本概念优点缺点架构图编程模型发送者发送消息固定步骤消费者消费消息固定步骤 为什么选择Rocket MQ Rocket MQ是阿帕奇顶级的开源项目&#xff0c;由阿里开发并开源。它的研发背景是Active MQ与Kafka不能很好的解决当时的业务场景。官网上是这么…

【rabbitMQ】Exchanges交换机

上一篇&#xff1a;springboot整合rabbitMQ模拟简单收发消息 https://blog.csdn.net/m0_67930426/article/details/134904766 本篇代码基于上一篇继续写 目录 Fanout 交换机 1. add queue 2. add Exchange 3.绑定队列 Direct 交换机 1. add queue 2. add Exchange 3.…

求职智能分析系统

本项目是一个基于Flask轻量级框架的计算机就业数据可视化分析平台。 采用echarts和ajax等技术进行数据展示和用户交互。

Mybatis是如何进行分页的?

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一份大厂面试资料《史上最全大厂面试题》&#xff0c;Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

【Linux】gdb-调试代码的工具

目录 一、概述 1.1 gdb是什么 1.2 为什么要使用gdb 二、gdb的简单使用 2.1 安装gdb 2.2 软件的debug版本和release版本 2.3 使用gdb 在之前的学习中&#xff0c;我们已经能够用vim编写和gcc/g编译代码了&#xff0c;下面来学习如何调试代码。 一、概述 1.1 gdb是什么 …

扩展学习|商业智能和分析:从大数据到大影响

文献来源&#xff1a;Chen H, Chiang R H L, Storey V C. Business intelligence and analytics: From big data to big impact[J]. MIS quarterly, 2012: 1165-1188. 下载链接&#xff1a;https://pan.baidu.com/s/1JoHcTbwdc1TPGnwXsL4kIA 提取码&#xff1a;a8uy 在不同的组…

【USRP】LFTX / LFRX

LFTX/LFRX 设备概述 LFTX 子板利用两个高速运算放大器来允许 0-30 MHz 的传输。该板仅接受实模式信号。LFTX 非常适合 HF 频段的应用&#xff0c;或使用外部前端来上变频和放大中间信号的应用。LFTX 的输出可以独立处理&#xff0c;也可以作为单个 I/Q 对进行处理。 主要特征…

基于SpringBoot+Vue会员制医疗预约服务管理信息系统(Java毕业设计)

点击咨询源码 大家好&#xff0c;我是DeBug&#xff0c;很高兴你能来阅读&#xff01;作为一名热爱编程的程序员&#xff0c;我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里&#xff0c;我将会结合实际项目经验&#xff0c;分享编程技巧、最佳实践以及解决问题的…

vue零基础

vue 与其他框架的对比 框架设计模式数据绑定灵活度文件模式复杂性学习曲线生态VueMVVM双向灵活单文件小缓完善ReactMVC单向较灵活all in js大陡丰富AngularMVC双向固定多文件较大较陡&#xff08;Typescript&#xff09;独立 更多对比细节&#xff1a;vue 官网&#xff1a;ht…

【人工智能 | 知识表示方法】状态空间法 语义网络,良好的知识表示是解题的关键!(笔记总结系列)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

漏洞复现--速达进存销管理系统任意文件上传

免责声明&#xff1a; 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…