聊聊跨进程共享内存的内部工作原理

news2024/10/5 17:39:44

在 Linux 系统的进程虚拟内存中,一个重要的特性就是不同进程的地址空间是隔离的。A 进程的地址 0x4000 和 B 进程的 0x4000 之间没有任何关系。这样确确实实是让各个进程的运行时互相之间的影响降到了最低。某个进程有 bug 也只能自己崩溃,不会影响其它进程的运行。

但是有时候我们想要跨进程传递一些数据。因为进程虚拟内存地址是隔离的。所以目前业界最常用的做法是让进程之间通过 127.0.0.1 或者是 Unix Domain Socket 等本机网络手段进行数据的传输。这个方案在传输的数据量较小的时候工作是很不错的。

但如果进程间想共享的数据特别大,比如说几个 GB,那如果使用网络 IO 方案的话,就会涉及到大量的内存拷贝的开销,导致比较低的程序性能。这是可以采用进程间共享内存的方法来在通信时避免内存拷贝。

那么问题来了,不同进程之间的虚拟地址是隔离的,共享内存又是如何突破这个限制的呢?我们今天就来深入地了解下共享内存的内部工作原理。

一、共享内存的使用方式

共享内存发送方进程的开发基本过程是调用 memfd_create 创建一个内存文件。然后通过 mmap 系统调用为这个内存文件申请一块共享内存。然后这个内存文件就可以写入数据了。最后把这个文件的句柄通过 Unix Domain Socket 的方式给接收方进程发送过去。

下面是发送方的核心代码。

int main(int argc, char **argv) {
 // 创建内存文件
 fd = memfd_create("Server memfd", ...);

 // 为内存文件申请 MAP_SHARED 类型的内存
 shm = mmap(NULL, shm_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

 // 向共享内存中写入数据
 sprintf(shm, "这段内容是保存在共享内存里的,接收方和发送方都能根据自己的fd访问到这块内容");

 // 把共享内存文件的句柄给接收方进程发送过去
 struct msghdr msgh;
 *((int *) CMSG_DATA(CMSG_FIRSTHDR(&msgh))) = fd;
 sendmsg(conn, &msgh, 0);
 ......
}

共享内存接收方的工作过程是先用 Unix Domain Socket 连接上服务器,然后使用 recvmsg 就可以收到发送方发送过来的文件句柄。

int main(int argc, char **argv) {
 // 通过 Unix Domain Socket 连接发送方
 connect(conn, (struct sockaddr *)&address, sizeof(struct sockaddr_un));

 // 通过连接取出发送方发送过来的内存文件句柄
 int size = recvmsg(conn, &msgh, 0);
 fd = *((int *) CMSG_DATA(cmsgh));

 // 读取共享文件中的内容
 shm = mmap(NULL, shm_size, PROT_READ, MAP_PRIVATE, fd, 0);
 printf("共享内存中的文件内容是: %s\n", shm);
 ......
}

这样这两个进程都各自有一个文件句柄,在底层上是指向同一个内存文件的。这样就实现了发送方和接收方之间的内存文件共享了。

但我们上面介绍的是开发基本过程。按照我们开发内功修炼公众号的风格,这还不算完,我们是要把它最底层的原理真正的弄通透才算的。所以接下来我们再深入地分析 memfd_create、 mmap、以及 Unix Domain socket sendmsg 和 recvmsg 的底层工作原理,来看看它们是如何配合来实现跨进程共享内存的。

二、共享内存文件原理

在发送方发送文件之前,需要先通过 memfd_create 来创建一个内存文件,然后再使用 mmap 为其分配内存。

2.1 创建内存文件

其中 memfd_create 函数是一个系统调用。内核中它的主要逻辑有两个,一是调用 get_unused_fd_flags 申请一个没使用过的文件句柄,二是调用 shmem_file_setup 创建一个共享内存文件。

我们来看 memfd_create 的源码。

// file:mm/memfd.c
SYSCALL_DEFINE2(memfd_create,
  const char __user *, uname,
  unsigned int, flags)
{
 ...
 // 申请一个未使用过的文件句柄
 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);

 // 创建一个共享内存的文件
 file = shmem_file_setup(name, 0, VM_NORESERVE);

 fd_install(fd, file);
 return fd;
}

其中在 shmem_file_setup 函数中又调用了 __shmem_file_setup。

// file:mm/shmem.c
static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, ...)
{
 ...
 // 申请一个 inode
 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
    flags);
 inode->i_flags |= i_flags;
 inode->i_size = size;

 ...
 // 创建一个文件
 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
    &shmem_file_operations);
 return res;
}

我们都知道磁盘文件在内核的实现中是由 inode 和 struct file 对象一起组成的。其实共享内存文件也一样,__shmem_file_setup 中就是先申请了一个 inode,然后再调用 alloc_file_pseudo 创建一个文件。值得注意的是,这个文件并非是磁盘上的文件,而只是在内存里的。

2.2 mmap申请内存

mmap 也是一个系统调用,注意我们在开篇处调用它的时候传入的第三个 flag 参数是 MAP_SHARED。这表示的是要通过 mmap 申请一块跨进程可共享的内存出来。mmap 的实现入口在 arch/x86/kernel/sys_x86_64.c

//file:arch/x86/kernel/sys_x86_64.c
SYSCALL_DEFINE6(mmap, unsigned long, addr, ...)
{
 return ksys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT);
}

接下来的这个函数的调用链路如下

SYSCALL_DEFINE6(mmap
-> ksys_mmap_pgoff
---> vm_mmap_pgoff
------> do_mmap_pgoff
--------> do_mmap

在 do_mmap 函数中,对输入的 MAP_SHARED 进行了处理。

//file:mm/mmap.c
unsigned long do_mmap(struct file *file, unsigned long addr,
   unsigned long len, unsigned long prot,
   unsigned long flags, vm_flags_t vm_flags,
   unsigned long pgoff, unsigned long *populate,
   struct list_head *uf)
{
 struct mm_struct * mm = current->mm;
 ...

 // 如果包含 MAP_SHARED,则对要申请的虚拟内存设置一个 VM_SHARED
 switch (flags & MAP_TYPE) {
  case MAP_SHARED:
  case MAP_SHARED_VALIDATE:
   vm_flags |= VM_SHARED | VM_MAYSHARE; 
   ... 
 } 
 ... 

 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
 ......
}

如果 flag 包含了 MAP_SHARED,则对要申请的虚拟内存设置一个 VM_SHARED。该标记指明的是要申请一个可以跨进程共享的内存块。接下来进入 mmap_region 中申请虚拟内存。

//file:mm/mmap.c
unsigned long mmap_region(struct file *file, ...)
{
 struct mm_struct *mm = current->mm;
 ......

 // 申请虚拟内存vma
 vma = vm_area_alloc(mm);

 // vma初始化
 vma->vm_start = addr;
 vma->vm_end = addr + len;
 vma->vm_flags = vm_flags;
 vma->vm_page_prot = vm_get_page_prot(vm_flags);
 vma->vm_pgoff = pgoff;
 ......

 // 加入到进程的虚拟内存 vma 链表中来
 vma_link(mm, vma, prev, rb_link, rb_parent);
}

进程的虚拟内存地址空间在内核底层中就是由这样一个个的 vma 来组成的。每一个 vma 都声明的是进程虚拟地址中的某一段地址范围已经分配出去了。在 mmap_region 函数中申请了 vma,并在内核中将其管理了起来。

这里注意我们在申请共享内存的时候,给 vma 是带了 VM_SHARED 标记的。带了这个标记的 vma和普通的虚拟内存不一样。后面在发生缺页中断申请物理内存的时候,在不同的进程间是可以对应到同一块物理内存的。所以可以实现进程间的共享。

所以真正让进程之间可以共享内存的是这个带 VM_SHARED 的 vma。

 资料直通车:Linux内核源码技术学习路线+视频教程内核源码

学习直通车:Linuxc/c++高级开发【直播公开课】

零声白金VIP体验卡:零声白金VIP体验卡(含基础架构/高性能存储/golang/QT/音视频/Linux内核)

三、发送方发送文件句柄

发送方在使用 memfd_create 创建出来内存文件,并用 mmap 为其申请可跨进程共享的内存后。接着就可以通过 Unix Domain Socket 中对应的 sendmsg 方法将这个共享内存文件的句柄发送出来。如下是发送的代码示例。

static void send_fd(int conn, int fd) {
    struct msghdr msgh;
    struct iovec iov;
    ...

    // 把文件句柄放到消息中来
    *((int *) CMSG_DATA(CMSG_FIRSTHDR(&msgh))) = fd;

    // 发送出去
    sendmsg(conn, &msgh, 0);
}

sendmsg 又是一个内核提供的系统调用,它位于 net/socket.c 文件中。

//file:net/socket.c
SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
{
 return __sys_sendmsg(fd, msg, flags, true);
}

该函数的调用路径如下

SYSCALL_DEFINE3(sendmsg, ...)
-> __sys_sendmsg
---> ___sys_sendmsg
-----> ____sys_sendmsg
-------> sock_sendmsg
---------> sock_sendmsg_nosec
-----------> unix_stream_sendmsg

在 unix_stream_sendmsg 中执行了真正的发送。

//file:net/unix/af_unix.c 
static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, ...)
{
 // 把文件描述符指向的文件信息复制到 scm_cookie 中
 struct scm_cookie scm;
 scm_send(sock, msg, &scm, false);

 // 不断构建数据包发送,直到发送完毕
    while (sent < len) {
     // 申请一块缓存区
     skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
        msg->msg_flags & MSG_DONTWAIT, &err,
        get_order(UNIX_SKB_FRAGS_SZ));

     // 拷贝数据到 skb
     err = unix_scm_to_skb(&scm, skb, !fds_sent);
     err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
     
     // 直接把 skb 放到对端的接收队列中
     skb_queue_tail(&other->sk_receive_queue, skb);
  
  //发送完毕回调
  other->sk_data_ready(other);
  sent += size;
     ...
    }
}

在 unix_stream_sendmsg 中申请了个 skb 缓存区,然后把要发送的文件句柄等数据都塞到里面,最后调用 skb_queue_tail 直接把 skb 放到 Unix Domain Socket 连接另一端的接收队列中了。

这里注意文件句柄只有在当前进程内才是有意义的。如果直接发送 fd 出去,接收方是没有办法使用的。所以在 scm_send 函数中,重要的逻辑是把 fd 对应的 struct file 的指针给找了出来,放到待发送的数据里面了。只有 file 这种内核级的对象接收方才能使用。

scm_send
-> __scm_send
---> scm_fp_copy

在 scm_fp_copy 中根据 fd 把 file 给找了出来。它的指针会被放到发送数据中

//file:net/core/scm.c
static int scm_fp_copy(struct cmsghdr *cmsg, struct scm_fp_list **fplp)
{
 ...
 //把每一个要发送的 fd 对应的 file 给找出来
 for (i=0; i< num; i++)
 {
  int fd = fdp[i];
  struct file *file;

  if (fd < 0 || !(file = fget_raw(fd)))
   return -EBADF;
  *fpp++ = file;
  fpl->count++;
 }
}

四、接收方接收文件

接下来接收方就可以通过 recvmsg 来接收发送方发送过来的文件了。recvmsg 系统会调用到 unix_stream_read_generic 中,然后在这个函数中把 skb 给取出来。

下面是接收函数核心 unix_stream_read_generic 的源码。

//file:net/unix/af_unix.c
static int unix_stream_read_generic(struct unix_stream_read_state *state,
        bool freezable)
{
 do {
  // 拿出一个 skb
  last = skb = skb_peek(&sk->sk_receive_queue);
  ...
 }
 ...
 if (state->msg)
  scm_recv(sock, state->msg, &scm, flags);
 return copied ? : err;
}

在 skb 拿出来后,还需要调用 scm_recv 来把 skb 中包含的文件给找出来。在 scm_recv 中调用 scm_detach_fds。

//file:net/core/scm.c
void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm)
{

 for (i = 0; i < fdmax; i++) {
  err = receive_fd_user(scm->fp->fp[i], cmsg_data + i, o_flags);
  if (err < 0)
   break;
 }
 ...
}

在 scm->fp->fp[i] 中包含的是发送方发送过来的 struct file 指针。这样文件就取出来了。当然 struct file 是个内核态的对象,用户没有办法使用。所以还需要再为其在新的进程中申请一个文件句柄,然后返回。

//file:fs/file.c
int __receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
{
 //申请一个新的文件描述符
 new_fd = get_unused_fd_flags(o_flags);
 ...

 //关联文件
 fd_install(new_fd, get_file(file));
 return new_fd;
}

五、总结

共享内存发送方进程的开发过程基本分 memfd_create 创建内存文件、mmap 申请共享内存、Unix Domain Socket 发送文件句柄三步。

  • 第一步,memfd_create 系统调用的主要逻辑有两个,一是调用 get_unused_fd_flags 申请一个没使用过的文件句柄,二是调用 shmem_file_setup 创建一个共享内存文件。
  • 第二步,mmap 系统调用在调用它的时候传入的第三个 flag 参数是 MAP_SHARED,该参数是申请一块跨进程可共享访问的物理内存。
  • 第三步,接着通过 Unix Domain Socket 中对应的 sendmsg 方法将这个共享内存文件的句柄发送出去。在发送时,把文件句柄对应的 struct file 指针找到并放到要封装的 skb 数据包中了。

接收方进程的主要实现原理是 recvmsg 系统调用。在这个系统调用中,内核会把发送方发送过来的 struct file 指针取出来,然后再在当前进程下为其申请一个新的文件句柄。这个文件句柄返回给用户进程后,用户进程就可以用它来和另外一个进程共享地访问同一块内存了。

总体来看,共享内存本质上共享的是内核对象 struct file,通过在不同的进程之间使用同一个 struct file 来实现的共享。当然也得需要在虚拟内存对象 vma 带上 VM_SHARED 标记来支持。

原文作者:开发内功修炼

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1302349.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何将FLV转换为MP3?金狮视频助手告诉你

FLV&#xff08;Flash video&#xff09;是一种流行的流媒体视频格式&#xff0c;具有最小的视频文件大小和快速的视频加载速度。但苹果的iOS设备不支持Flash Player插件&#xff0c;因此&#xff0c;要在 iPad 上播放 FLV 视频&#xff0c;您需要将 FLV 转换为 MP4 才能观看。…

力扣编程题算法初阶之双指针算法+代码分析

目录 第一题&#xff1a;复写零 第二题&#xff1a;快乐数&#xff1a; 第三题&#xff1a;盛水最多的容器 第四题&#xff1a;有效三角形的个数 第一题&#xff1a;复写零 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 思路&#xff1a; 上期…

Java CPU使用率高排除方法

CPU使用率高排除方法 查询CPU使用率高的进程查询线程CPU使用率ps命令方式top 命令方式 查询线程堆栈 jstat 查询gc情况 查询CPU使用率高的进程 ps aux --sort-pcpu | head -10通过ps指令看到pid1799程序CPU使用率47.1%&#xff0c;再看看程序的线程使用情况。 查询线程CPU使用…

关于对向量检索研究的一些学习资料整理

官方学习资料 主要是的学习资料是&#xff0c; 官方文档 和官方博客。相关文章还是挺多 挺不错的 他们更新也比较及时。有最新的东西 都会更新出来。es scdn官方博客 这里简单列一些&#xff0c;还有一些其他的&#xff0c;大家自己感兴趣去看。 什么是向量数据库 Elasticse…

数据结构之----算法简单介绍

数据结构之----算法简单介绍 什么是算法&#xff1f; 算法是指在有限的时间内得出想要的结果的一组指令或者是操作步骤。 算法特性&#xff1a; 问题是明确的&#xff0c;包含清晰的输入和输出定义。具有可行性&#xff0c;能够在有限步骤、时间和内存空间下完成。各步骤都…

吃到“政务大模型”的第一口螃蟹,大湾区实现改革破题

文&#xff5c;刘雨琦 编&#xff5c;王一粟 生活垃圾分类标准实施之后&#xff0c;如何有效提升垃圾分类的成效成为摆在众多城市管理者的“老大难”问题。广州白云区城市管理和综合执法局党组书记、局长郑柏生有一个“小妙招”:“我们运用科技手段首创云站桶值守模式&#xf…

Flutter 开发问题摘要

系统&#xff1a;MacOS 14 开发工具&#xff1a;vscode Flutter版本&#xff1a;3.16.3 1.Error: To set up CocoaPods for ARM macOS, run: 解决方式&#xff1a; 在项目的ios文件目录下面执行下面的命令&#xff1a; arch -x86_64 pod install 执行结果&#xff1a;

Excel COUNT类函数使用

目录 一. COUNT二. COUNTA三. COUNTBLANK四. COUNTIF五. COUNTIFS 一. COUNT ⏹用于计算指定范围内包含数字的单元格数量。 基本语法 COUNT(value1, [value2], ...)✅统计A2到A7所有数字单元格的数量 ✅统计A2到A7&#xff0c;B2到B7的所有数字单元格的数量 二. COUNTA ⏹计…

什么是HTTP/2?它与HTTP/1.x相比有什么改进?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

用户登录权限

文章目录 [TOC](文章目录) 前言一、鉴权二、 Cookie与session1.HTTP无状态2.cookie的重要属性3.cookie 和 session 的生命周期3.1 cookie 生命周期影响因素3.2 session 生命周期影响因素 4.cookie 和 session 的区别5.工作原理3 用户登录Node.js和Express验证session 三、JSON …

机器学习-聚类问题

前言 聚类算法又叫做”无监督分类“&#xff0c;目标是通过对无标记训练样本来揭示数据的内在性质及 规律&#xff0c;为进一步的数据分析提供基础。 Kmeans 作为聚类算法的典型代表&#xff0c;Kmeans可以说是最简单的聚类算法&#xff0c;没有之一&#xff0c;那她是怎么完…

力扣111. 二叉树的最小深度

给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;2 示例 2&#xff1a; 输入…

Win7告诉你如何扩大c盘空间

Win7告诉你如何扩大c盘空间 C盘是指电脑硬盘主分区之一&#xff0c;一般用于储存或安装系统使用。很多文件都默认安装到c盘&#xff0c;导致c盘空间严重不足&#xff0c;那么如何扩大c盘空间呢&#xff1f;接下来&#xff0c;小编就教你扩大c盘空间的具体步骤 怎么给C盘扩容呢&…

关于加密解密,加签验签那些事

面对MD5、SHA、DES、AES、RSA等等这些名词你是否有很多问号&#xff1f;这些名词都是什么&#xff1f;还有什么公钥加密、私钥解密、私钥加签、公钥验签。这些都什么鬼&#xff1f;或许在你日常工作没有听说过这些名词&#xff0c;但是一旦你要设计一个对外访问的接口&#xff…

LinuxBasicsForHackers笔记 --Python 脚本基础

添加Python模块 Python 有一个专门用于安装和管理 Python 包的包管理器&#xff0c;称为 pip&#xff08;Pip Installs Packages&#xff09;。由于我们在这里使用 Python 3&#xff0c;因此您将需要 Python 3 的 pip 来下载和安装软件包。默认情况下应包含 Pip&#xff0c;但…

利用C语言模拟实现堆的基本操作和调堆算法

利用C语言模拟实现堆的基本操作和调堆算法 文章目录 利用C语言模拟实现堆的基本操作和调堆算法前言一、堆的基本原理大根堆和小根堆的比较 二、实现堆的基本操作1&#xff09;结构定义2&#xff09;初始化堆&#xff08;HeapInit&#xff09;3&#xff09;销毁堆&#xff08;He…

智能抠图软件有哪些?不妨试试这四款AI抠图工具

你知道的智能抠图软件有哪些&#xff1f;随着 AI 技术的迅速发展&#xff0c;许多图像处理任务都可以交由 AI 自动完成&#xff0c;例如修图、抠图、高清修复等。AI 图像工具不仅将我们从单调重复的工作中解放出来&#xff0c;而且其处理图像的效果和效率也往往优于人工。最近&…

docker的资源控制:

docker的资源控制&#xff1a; 对容器的使用宿主机的资源进行限制 cpu 内存 磁盘i/0 docker使用linux自带的功能cgroup control grouos是linux内核系统提供的一种可以限制&#xff0c;记录&#xff0c;隔离进程所使用的物理资源 control grouos是linux内核系统提供的一种可…

nginx中的正则表达式及location和rewrite

目录 常用的Nginx 正则表达式 location和rewrite的区别 location location 大致可以分为三类 location 常用的匹配规则 location 优先级 location 示例说明 location优先级的总结 rewrite rewrite的功能 rewrite实现跳转的条件 rewrite的执行顺序 rewrite的语法格式…

mysql:查询当前登录的用户

可以使用USER()函数查询当前登录的用户&#xff0c;例如&#xff1a;