YOLOv8改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv8版(全网独家创新)

news2024/11/25 0:46:57

一、本文介绍

本文给大家带来的改进机制是利用今年新推出的AFPN(渐近特征金字塔网络)来优化检测头,AFPN的核心思想是通过引入一种渐近的特征融合策略,将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于减小不同层次特征之间的语义差距,提高特征融合效果,使得检测模型能更好地适应不同层次的语义信息。本文在AFPN的结构基础上,为了适配YOLOv8改进AFPN结构,同时将AFPN融合到YOLOv8中(因为AFPN需要四个检测头,我们只有三个,下一篇文章我会出YOLOv8适配AFPN增加小目标检测头)实现暴力涨点。

推荐指数:⭐⭐⭐⭐

打星原因:为什么打四颗星是因为我觉得这个机制的计算量会上涨,这是扣分点,同时替换这个检测头刚开始前20个epochs的效果不好,随着轮次的增加涨幅才能体现出来,这也是扣分点,我给结构打分完全是客观的,并不是我推出的结构必须满分。

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

这次试验我用的数据集大概有七八百张照片训练了150个epochs,虽然没有完全拟合但是效果有一定的涨点幅度,所以大家可以进行尝试毕竟不同的数据集上效果也可能差很多,同时我在后面给了多种yaml文件大家可以分别进行实验来检验效果。

目录

一、本文介绍

二、AFPN基本框架原理​编辑

2.1 AFPN的基本原理

三、Detect_AFPN完整代码

四、手把手教你添加Detect_AFPN检测头

4.1 修改一

4.2 修改二

4.3 修改三 

4.4 修改四 

4.5 修改五 

4.6 修改六 

4.7 修改七 

4.8 修改八

4.9 修改九 

五、Detect_AFPN检测头的yaml文件

六、完美运行记录

七、本文总结


二、AFPN基本框架原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1 AFPN的基本原理

AFPN的核心思想是通过引入一种渐近的特征融合策略,将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于减小不同层次特征之间的语义差距,提高特征融合效果,使得检测模型能更好地适应不同层次的语义信息。

主要改进机制:
1. 底层特征融合: AFPN通过引入底层特征的逐步融合,首先融合底层特征,接着深层特征,最后整合顶层特征。这种层级融合的方式有助于更好地利用不同层次的语义信息,提高检测性能。

2. 自适应空间融合: 引入自适应空间融合机制(ASFF),在多级特征融合过程中引入变化的空间权重,加强关键级别的重要性,同时抑制来自不同对象的矛盾信息的影响。这有助于提高检测性能,尤其在处理矛盾信息时更为有效。

3. 底层特征对齐: AFPN采用渐近融合的思想,使得不同层次的特征在融合过程中逐渐接近,减小它们之间的语义差距。通过底层特征的逐步整合,提高了特征融合的效果,使得模型更能理解和利用不同层次的信息。

个人总结:AFPN的灵感就像是搭积木一样,它不是一下子把所有的积木都放到一起,而是逐步地将不同层次的积木慢慢整合在一起。这样一来,我们可以更好地理解和利用每一层次的积木,从而构建一个更牢固的目标检测系统。同时,引入了一种智能的机制,能够根据不同情况调整注意力,更好地处理矛盾信息。

上面上AFPN的网络结构,可以看出从Backbone中提取出特征之后,将特征输入到AFPN中进行处理,然后它可以获得不同层级的特征进行融合,这也是它的主要思想质疑,同时将结果输入到检测头中进行预测。

(需要注意的是本文砍掉了最下面那一条线适应YOLOv8因为我们是三个检测头,下一篇文章我会出增加小目标检测头的然后四个头的yolov8改进,从而适应AFPN的结构)。 


三、Detect_AFPN完整代码

这里代码是我对于2023年新提出的AFPN进行了修改然后适配YOLOv8的整体结构提出的检测头,本来该结构是四个检测头部分,但是我去除掉了一个从而适配yolov8,当然在我也在出一篇文章里会用到四头的(增加辅助训练头,针对小目标检测)讲解(要不然一个博客放不下 这么多代码)。

import math
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules import DFL
from ultralytics.nn.modules.conv import Conv
from ultralytics.utils.tal import dist2bbox, make_anchors

__all__ =['Detect_AFPN']

def BasicConv(filter_in, filter_out, kernel_size, stride=1, pad=None):
    if not pad:
        pad = (kernel_size - 1) // 2 if kernel_size else 0
    else:
        pad = pad
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),
        ("relu", nn.ReLU(inplace=True)),
    ]))


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, filter_in, filter_out):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(filter_in, filter_out, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(filter_out, momentum=0.1)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(filter_out, filter_out, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(filter_out, momentum=0.1)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += residual
        out = self.relu(out)

        return out


class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels, scale_factor=2):
        super(Upsample, self).__init__()

        self.upsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 1),
            nn.Upsample(scale_factor=scale_factor, mode='bilinear')
        )


    def forward(self, x):
        x = self.upsample(x)

        return x


class Downsample_x2(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x2, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 2, 2, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class Downsample_x4(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x4, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 4, 4, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class Downsample_x8(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x8, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 8, 8, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class ASFF_2(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_2, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 2, 2, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ASFF_3(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_3, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2, input3):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)
        level_3_weight_v = self.weight_level_3(input3)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :] + \
                            input3 * levels_weight[:, 2:, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ASFF_4(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_4, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_0 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input0, input1, input2):
        level_0_weight_v = self.weight_level_0(input0)
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)


        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input0 * levels_weight[:, 0:1, :, :] + \
                            input1 * levels_weight[:, 1:2, :, :] + \
                            input2 * levels_weight[:, 2:3, :, :]


        out = self.conv(fused_out_reduced)

        return out


class BlockBody(nn.Module):
    def __init__(self, channels=[64, 128, 256, 512]):
        super(BlockBody, self).__init__()

        self.blocks_scalezero1 = nn.Sequential(
            BasicConv(channels[0], channels[0], 1),
        )
        self.blocks_scaleone1 = nn.Sequential(
            BasicConv(channels[1], channels[1], 1),
        )
        self.blocks_scaletwo1 = nn.Sequential(
            BasicConv(channels[2], channels[2], 1),
        )


        self.downsample_scalezero1_2 = Downsample_x2(channels[0], channels[1])
        self.upsample_scaleone1_2 = Upsample(channels[1], channels[0], scale_factor=2)

        self.asff_scalezero1 = ASFF_2(inter_dim=channels[0])
        self.asff_scaleone1 = ASFF_2(inter_dim=channels[1])

        self.blocks_scalezero2 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone2 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )

        self.downsample_scalezero2_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero2_4 = Downsample_x4(channels[0], channels[2])
        self.downsample_scaleone2_2 = Downsample_x2(channels[1], channels[2])
        self.upsample_scaleone2_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.upsample_scaletwo2_2 = Upsample(channels[2], channels[1], scale_factor=2)
        self.upsample_scaletwo2_4 = Upsample(channels[2], channels[0], scale_factor=4)

        self.asff_scalezero2 = ASFF_3(inter_dim=channels[0])
        self.asff_scaleone2 = ASFF_3(inter_dim=channels[1])
        self.asff_scaletwo2 = ASFF_3(inter_dim=channels[2])

        self.blocks_scalezero3 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone3 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo3 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )

        self.downsample_scalezero3_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero3_4 = Downsample_x4(channels[0], channels[2])
        self.upsample_scaleone3_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.downsample_scaleone3_2 = Downsample_x2(channels[1], channels[2])
        self.upsample_scaletwo3_4 = Upsample(channels[2], channels[0], scale_factor=4)
        self.upsample_scaletwo3_2 = Upsample(channels[2], channels[1], scale_factor=2)

        self.asff_scalezero3 = ASFF_4(inter_dim=channels[0])
        self.asff_scaleone3 = ASFF_4(inter_dim=channels[1])
        self.asff_scaletwo3 = ASFF_4(inter_dim=channels[2])

        self.blocks_scalezero4 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone4 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo4 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )


    def forward(self, x):
        x0, x1, x2 = x

        x0 = self.blocks_scalezero1(x0)
        x1 = self.blocks_scaleone1(x1)
        x2 = self.blocks_scaletwo1(x2)


        scalezero = self.asff_scalezero1(x0, self.upsample_scaleone1_2(x1))
        scaleone = self.asff_scaleone1(self.downsample_scalezero1_2(x0), x1)

        x0 = self.blocks_scalezero2(scalezero)
        x1 = self.blocks_scaleone2(scaleone)

        scalezero = self.asff_scalezero2(x0, self.upsample_scaleone2_2(x1), self.upsample_scaletwo2_4(x2))
        scaleone = self.asff_scaleone2(self.downsample_scalezero2_2(x0), x1, self.upsample_scaletwo2_2(x2))
        scaletwo = self.asff_scaletwo2(self.downsample_scalezero2_4(x0), self.downsample_scaleone2_2(x1), x2)

        x0 = self.blocks_scalezero3(scalezero)
        x1 = self.blocks_scaleone3(scaleone)
        x2 = self.blocks_scaletwo3(scaletwo)

        scalezero = self.asff_scalezero3(x0, self.upsample_scaleone3_2(x1), self.upsample_scaletwo3_4(x2))
        scaleone = self.asff_scaleone3(self.downsample_scalezero3_2(x0), x1, self.upsample_scaletwo3_2(x2))
        scaletwo = self.asff_scaletwo3(self.downsample_scalezero3_4(x0), self.downsample_scaleone3_2(x1), x2)


        scalezero = self.blocks_scalezero4(scalezero)
        scaleone = self.blocks_scaleone4(scaleone)
        scaletwo = self.blocks_scaletwo4(scaletwo)


        return scalezero, scaleone, scaletwo

class AFPN(nn.Module):
    def __init__(self,
                 in_channels=[256, 512, 1024, 2048],
                 out_channels=128):
        super(AFPN, self).__init__()

        self.fp16_enabled = False

        self.conv0 = BasicConv(in_channels[0], in_channels[0] // 8, 1)
        self.conv1 = BasicConv(in_channels[1], in_channels[1] // 8, 1)
        self.conv2 = BasicConv(in_channels[2], in_channels[2] // 8, 1)
        # self.conv3 = BasicConv(in_channels[3], in_channels[3] // 8, 1)

        self.body = nn.Sequential(
            BlockBody([in_channels[0] // 8, in_channels[1] // 8, in_channels[2] // 8])
        )

        self.conv00 = BasicConv(in_channels[0] // 8, out_channels, 1)
        self.conv11 = BasicConv(in_channels[1] // 8, out_channels, 1)
        self.conv22 = BasicConv(in_channels[2] // 8, out_channels, 1)
        # self.conv33 = BasicConv(in_channels[3] // 8, out_channels, 1)

        # init weight
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight, gain=0.02)
            elif isinstance(m, nn.BatchNorm2d):
                torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
                torch.nn.init.constant_(m.bias.data, 0.0)

    def forward(self, x):
        x0, x1, x2 = x

        x0 = self.conv0(x0)
        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        # x3 = self.conv3(x3)

        out0, out1, out2 = self.body([x0, x1, x2])

        out0 = self.conv00(out0)
        out1 = self.conv11(out1)
        out2 = self.conv22(out2)


        return out0, out1, out2


class Detect_AFPN(nn.Module):
    """YOLOv8 Detect head for detection models."""
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, channel=256,  ch=()):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(channel, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(channel, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
        self.AFPN = AFPN(ch, channel)

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        x = list(self.AFPN(x))
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV ops
            box = x_cat[:, :self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides

        if self.export and self.format in ('tflite', 'edgetpu'):
            # Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:
            # https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309
            # See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695
            img_h = shape[2] * self.stride[0]
            img_w = shape[3] * self.stride[0]
            img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
            dbox /= img_size

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)


四、手把手教你添加Detect_AFPN检测头

这里教大家添加检测头,检测头的添加相对于其它机制来说比较复杂一点,修改的地方比较多。

具体更多细节可以看我的添加教程博客,下面的教程也是完美运行的,看那个都行具体大家选择。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头 


4.1 修改一

首先我们将上面的代码复制粘贴到'ultralytics/nn/modules' 目录下新建一个py文件复制粘贴进去,具体名字自己来定,我这里起名为AFPN.py。


4.2 修改二

我们新建完上面的文件之后,找到如下的文件'ultralytics/nn/tasks.py'。这里需要修改的地方有点多,总共有7处,但都很简单。首先我们在该文件的头部导入我们AFPN文件中的检测头。


4.3 修改三 

找到如下的代码进行将检测头添加进去,这里给大家推荐个快速搜索的方法用ctrl+f然后搜索Detect然后就能快速查找了。


4.4 修改四 

同理将我们的检测头添加到如下的代码里。


4.5 修改五 

同理


4.6 修改六 

同理


4.7 修改七 

同理


4.8 修改八

这里有一些不一样,我们需要加一行代码

        else:
            return 'detect'

为啥呢不一样,因为这里的m在代码执行过程中会将你的代码自动转换为小写,所以直接else方便一点,以后出现一些其它分割或者其它的教程的时候在提供其它的修改教程。 


4.9 修改九 

这里也有一些不一样,需要自己手动添加一个括号,提醒一下大家不要直接添加,和我下面保持一致。


五、Detect_AFPN检测头的yaml文件

这个代码的yaml文件和正常的对比也需要修改一下,如下->

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect_AFPN, [nc, 256]]  # Detect(P3, P4, P5)


六、完美运行记录

最后提供一下完美运行的图片。


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1301637.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

047:vue加载循环倒计时 示例

第047个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

Nature子刊 | snATAC-seq 揭示斑马鱼胚胎早期发育过程中的单核染色质景观

2023年7月19日,一篇题为“Single-nucleus chromatin landscapes during zebrafish early embryogenesis”的研究论文在scientific data(IF9.8)上发表,该研究使用华大智造单细胞测序平台进行snATAC-seq,建立了斑马鱼胚胎…

openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup

文章目录 openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup150.1 背景信息150.2 前提条件150.3 语法150.4 参数说明150.5 示例 openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup 150.1 背景信息 openGaus…

数据结构之单链表(不带头单向非循环链表)

一.引言 上一节我们学过了顺序表,那么我们想想顺序表有没有问题呢?我们来讨论顺序表的问题及思考。 顺序表问题: 1.中间/头部的插入删除,时间复杂度为O(N) 2. 增容需要申请新空间,拷贝数据,释放旧空间。会…

循环依赖:解析软件设计的迷局

目录 引言 循环依赖的本质 影响与挑战 1. 编译和构建问题 2. 耦合度增加 3. 难以进行单元测试 4. 可扩展性降低 解决循环依赖的策略 1. 模块重构 2. 引入接口抽象 3. 依赖注入 4. 模块化与分层设计 5. 使用工具进行分析 实际案例:Spring框架的循环依赖…

文件系统和磁盘管理应用训练 make编译

一、 掌握Linux下磁盘管理的方法 掌握文件系统的挂载和卸载 掌握磁盘限额与文件权限管理 二、内容(详细步骤与结果): (1)使用 fdisk 命令进行硬盘分区 以 root 用户登录到系统字符界面下输人 fdisk 命令&#xff…

基于ssm保险业务管理系统设计与实现论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本保险业务管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息…

在普通的项目中创建web的功能

新增web功能: 1.创建一个新项目,不勾选模板:2.添加web功能: 1.创建一个新项目,不勾选模板: 发现普通项目没有webapp文件夹,即没有web的功能。 2.添加web功能: Add framework support:添加一些…

配置本地端口镜像示例(1:1)

本地端口镜像简介 本地端口镜像是指观察端口与监控设备直接相连,观察端口直接将镜像端口复制来的报文转发到与其相连的监控设备进行故障定位和业务监测。 配置注意事项 观察端口专门用于镜像报文的转发,因此不要在上面配置其他业务,防止镜像…

XML映射文件(第二种方式执行SQL语句)

第一种方式是注解的方式在下面: 注解操作SQL语句https://blog.csdn.net/m0_71149935/article/details/134908856?spm1001.2014.3001.5501 要想使用XML,需要遵守三项规范: XML映射文件的名称与Mapper接口名称一致,并且将XML映射…

数据库容灾的设计与实现(五)

六、容灾方案的应用评估 上文中设计了油田数据级容灾系统,完成了基于Oracle Data Guard数据级容灾架构的设计和实施,实现了Broker Failover的FSFO切换技术、触发器提供不间断服务器端服务、客户端使用TAF实现透明故障转移的,完成了数据级容灾…

统信UOS_麒麟KYLINOS上跨架构下载离线软件包

原文链接:统信UOS/麒麟KYLINOS上跨架构下载离线软件包 hello,大家好啊,今天给大家带来一篇在统信UOS/麒麟KYLINOS上跨架构下载离线软件包的实用教程。在我们的日常工作中,可能会遇到这样的情况:需要为不同架构的设备下…

可学习超图拉普拉斯算子代码

python版本:3.6。sklearn版本:scikit-learn0.19 问题1:ERROR: Could not build wheels for ecos, scs, which is required to install pyproject.toml-based projects| 解决办法:cvxpy安装过程中遇到的坑_ecos 2.0.7.post1 cp37 …

使用Python提取PDF文件中指定页面的内容

在日常工作和学习中,我们经常需要从PDF文件中提取特定页面的内容。在本篇文章中,我们将介绍如何使用Python编程语言和两个强大的库——pymupdf和wxPython,来实现这个任务。 1. 准备工作 首先,确保你已经安装了以下两个Python库&…

软件无线电SDR-频谱采集python实现

sdr做的频谱采集,保存的500张频谱图,能看出来是什么东西吗?

SQL错题集2

1.插入记录 用户1001在2021年9月1日晚上10点11分12秒开始作答试卷9001,并在50分钟后提交,得了90分; 用户1002在2021年9月4日上午7点1分2秒开始作答试卷9002,并在10分钟后退出了平台。 2.请把exam_record表中2021年9月1日之前开始作…

2023 CCF中国软件大会(CCF ChinaSoft) “区块链可靠性分析”论坛成功召开

2023年12月1日上午,2023年度CCF中国软件大会区块链可靠性分析论坛成功召开。 本次论坛由中山大学郑子彬、澳门科技大学张涛、中科院软件所蔡彦和中山大学陈嘉弛四位老师联合组织举办。本论坛重点关注区块链可靠性,邀请了近年来在区块链可靠性研究方面有先…

JavaEE 08 线程池简介

前言 前面我们谈完了定时器,单例模式,阻塞队列等的操作并且做了模拟实现,今天我们再来说一说线程池的操作以及一些锁策略. 注:本章几乎均为理论篇,实践较少. 下面就让我们开始吧. 线程池 我们知道因为进程的频繁创建和销毁,带来的开销过大,我们无法接受,所以我们引入了更轻量级…

【rabbitMQ】springboot整合rabbitMQ模拟简单收发消息

目录 1.创建项目和模块 2.添加rabbitMQ依赖 3.启动rabbitMQ服务 4.引入rabbitMQ服务端信息 5.通过单元测试模拟业务发送消息 6. 接收消息 1.创建项目和模块 2.添加rabbitMQ依赖 <!-- rabbitmq依赖--> <dependency> <groupId>org.sp…

泊车功能专题介绍 ———— AVP系统技术要求之运动控制SOTIF

文章目录 运动控制要求车辆子系统控制系统配置要求车辆运动控制系统要求驱动系统制动系统驻车系统转向系统换档系统自动启停系统车联网系统车辆运行数据采集系统灯光系统门锁车窗系统续航里程车内HMI系统胎压监测系统无钥匙进入及启动系统雨刮系统空调系统安全系统电动后视镜系…