Python实现FA萤火虫优化算法优化XGBoost分类模型(XGBClassifier算法)项目实战

news2024/11/27 20:28:07

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法优化XGBoost分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

  

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

        

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

  

关键代码如下:     

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。   

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建FA萤火虫优化算法优化XGBoost分类模型

主要使用FA萤火虫优化算法优化XGBoost分类算法,用于目标分类。

6.1 FA萤火虫优化算法寻找最优的参数值   

最优参数:

   

6.2 最优参数值构建模型

编号

模型名称

参数

1

XGBoost分类模型

n_estimators=best_n_estimators

2

learning_rate=best_learning_rate

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

XGBoost分类模型

准确率

0.8400

查准率

0.8408

查全率

0.8408

F1分值

0.8408

从上表可以看出,F1分值为0.8408,说明模型效果较好。

关键代码如下:  

7.2 分类报告

      

从上图可以看出,分类为0的F1分值为0.84;分类为1的F1分值为0.84。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有32个样本;实际为1预测不为1的 有32个样本,整体预测准确率良好。    

8.结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找XGBoost算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/1YSWWhDN8YFdlqPhCoCYNRg 
提取码:7exh

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1300559.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

6.题目:编号2490 小蓝的括号串1

题目: ### 这道题主要考察stack #include<bits/stdc.h> using namespace std; const int N105; stack<char> stk; char s[N]; int main(){ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);int n;cin>>n;cin>>s1;bool anstrue;for(int i1;i<n;i){…

【PWN】学习笔记(二)【栈溢出基础】

课程教学 课程链接&#xff1a;https://www.bilibili.com/video/BV1854y1y7Ro/?vd_source7b06bd7a9dd90c45c5c9c44d12e7b4e6 课程附件&#xff1a; https://pan.baidu.com/s/1vRCd4bMkqnqqY1nT2uhSYw 提取码: 5rx6 C语言函数调用栈 一个栈帧保存的是一个函数的状态信息&…

java--Date、SimpleDateFormat时间类,JDK8之前的

1.Date 代表的是日期和时间 2.SimpleDateFormat 代表简单日期格式化&#xff0c;可以用来把日期对象、时间毫秒值格式化成我们想要的形式。 3.时间格式常见符号 4.SimpleDateFormat解析字符串时间成为日期对象

专业mac投屏软件AirServer v7.2.7 mac中文版

专业mac投屏软件AirServer v7.2.7 mac中文版是一款好用的投屏工具&#xff0c;它可以将您的Mac变成通用镜像接收器&#xff0c;允许您使用内置的AirPlay或基于Google Cast的屏幕投影功能镜像设备的显示器。您可以通过任何AirPlay或Google Cast兼容设备镜像或投射屏幕&#xff0…

C语言精选——选择题Day42

第一题 1. 下面程序输出的结果是&#xff08;&#xff09; #include <stdio.h> int main () {int x;x printf("I See, Sea in C");printf("x%d" , x); } A&#xff1a;2 B&#xff1a;随机值 C&#xff1a;都不是 D&#xff1a;15 答案及解析 D p…

LabVIEW开发新型电化学性能测试设备

LabVIEW开发新型电化学性能测试设备 开发了一种基于Arduino和LabVIEW的新型电化学性能测试装置&#xff0c;专门用于实验电池&#xff0c;特别是在锂硫&#xff08;Li-S&#xff09;技术领域的评估。这种装置结合了简单、灵活的硬件和软件工具&#xff0c;使新科学家能够设计针…

DiffiT

本文首发于AIWalker&#xff0c;欢迎关注。 https://arxiv.org/abs/2312.02139 https://github.com/NVlabs/DiffiT 扩散模型以其强大的表达能力和高样本质量在许多领域得到了新的应用。对于样本生成&#xff0c;这些模型依赖于通过迭代去噪生成图像的去噪神经网络。然而&#x…

每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量

本文重点 在卷积神经网络中有很多重要的卷积核&#xff0c;比如1*1的卷积核&#xff0c;3*3的卷积核&#xff0c;本文将讲解1*1的卷积核的使用&#xff0c;它在卷积神经网络中具有重要的地位。由于1*1的卷积核使用了最小的窗口&#xff0c;那么1*1的卷积核就失去了卷积层可以识…

Redis 持久化 —— 超详细操作演示!

四、Redis 持久化 四、Redis 持久化4.1 持久化基本原理4.2 RDB持久化4.3 AOF持久化4.4 RDB与AOF对比4.5 持久化技术转型 五、Redis 主从集群六、Redis 分布式系统七、Redis 缓存八、Lua脚本详解九、分布式锁 数据库系列文章&#xff1a; 关系型数据库: MySQL —— 基础语法大全…

leetcode 100.相同的树

涉及到递归&#xff0c;最好多画图理解&#xff0c;希望对你们有帮助 100.相同的树 题目 给你两棵二叉树的根节点 p 和 q &#xff0c;编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同&#xff0c;并且节点具有相同的值&#xff0c;则认为它们是相同的。 题目链接…

2023-12-05 Qt学习总结6

点击 <C 语言编程核心突破> 快速C语言入门 Qt学习总结 前言十八 QMessageBox消息对话框十九 Qt布局管理总结 前言 要解决问题: 学习qt最核心知识, 多一个都不学. 十八 QMessageBox消息对话框 QMessageBox消息对话框是Qt中的一个提供用户交互界面的对话框窗口。 它通常…

perl处理base64、md5、SHA-1、SHA-256的计算

使用perl可以进行base64、md5、SHA-1、SHA-256的计算&#xff0c;使用也非常方便&#xff0c;下面是示例代码&#xff1a; #! /usr/bin/perl use v5.14; use MIME::Base64; use Digest;my $test_str hello world;# 测试base64 say encode_base64($test_str);# 测试md5 my $md…

kafka入门(四):消费者

消费者 (Consumer ) 消费者 订阅 Kafka 中的主题 (Topic) &#xff0c;并 拉取消息。 消费者群组&#xff08; Consumer Group&#xff09; 每一个消费者都有一个对应的 消费者群组。 一个群组里的消费者订阅的是同一个主题&#xff0c;每个消费者接收主题的一部分分区的消息…

STM32-TIM定时器输出比较

目录 一、输出比较简介 二、PWM简介 三、输出比较通道&#xff08;通用&#xff09; 四、输出比较通道&#xff08;高级&#xff09; 五、输出比较模式 六、PWM基本结构 七、PWM参数计算 八、外设介绍 8.1 舵机 8.2 直流电机及驱动 九、开发步骤 十、输出比较库函数…

TCP数据粘包的处理

TCP数据粘包的处理 背锅侠TCP解决方案2.1 发送端2.2 接收端 背锅侠TCP 在前面介绍套接字通信的时候说到了TCP是传输层协议&#xff0c;它是一个面向连接的、安全的、流式传输协议。因为数据的传输是基于流的所以发送端和接收端每次处理的数据的量&#xff0c;处理数据的频率可…

springboot084基于springboot的论坛网站

springboot084基于springboot的论坛网站 源码获取&#xff1a; https://docs.qq.com/doc/DUXdsVlhIdVlsemdX

[香橙派]orange pi zero 3 烧录Ubuntu系统镜像——无需HDMI数据线安装

一、前言 本文我们将介绍如何使用orange pi zero 3 安装Ubuntu系统&#xff0c;本文相关步骤均参考自开发手册。 二、实施准备 根据开发手册中所提到的&#xff0c;我们应该拥有如下配件: 1.orange pi zero 3 开发板 2.TF 卡——最小 8GB 容量的 class10 级或以上的高速闪迪卡。…

十大排序算法讲解

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

ActiveMQ任意文件写入漏洞(CVE-2016-3088)

简述&#xff1a;ActiveMQ的fileserver支持写入文件(但是不支持解析jsp),同时也支持移动文件。所以我们只需要先上传到服务器&#xff0c;然后再移动到可以解析的地方即可造成任意文件写入漏洞。我们可以利用这个漏洞来上传webshell或者上传定时任务文件。 漏洞复现 启动环境 …

一个例子带你入门影刀编码版(一)

文章结构 摘要需求分析伪代码编写代码实现完整代码相关链接 摘要 将通过一个电商业务场景下的真实需求&#xff0c;带领大家零基础入门影刀编码版&#xff0c;本系列将会分三步讲解&#xff0c;从接到需求到最后完成发版&#xff0c;整个过程中我们需要做些什么&#xff1f;带…