STM32-TIM定时器输出比较

news2024/11/27 22:32:18

目录

一、输出比较简介

二、PWM简介

三、输出比较通道(通用)

四、输出比较通道(高级)

五、输出比较模式

六、PWM基本结构 

七、PWM参数计算

八、外设介绍

8.1 舵机

8.2 直流电机及驱动

九、开发步骤

十、输出比较库函数 

十一、实验

9.1 PWM驱动LED呼吸灯

9.2 PWM驱动舵机

9.3 PWM驱动直流电机


一、输出比较简介

>OC(Output Compare)输出比较
>输出比较可以通过比较CNT与CCR(捕获/比较寄存器)值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频率和占空比的PWM波形
>每个高级定时器和通用定时器都拥有4个输出比较通道
>高级定时器的前3个通道额外拥有死区生成和互补输出的功能

二、PWM简介

>PWM(Pulse Width Modulation)脉冲宽度调制
>在具有惯性的系统中,可以通过对一系列脉冲的宽度进行调制,来等效地获得所需要的模拟参量,常应用于电机控速等领域
>PWM参数:
  频率 = 1 / Ts           占空比 = Ton / Ts           分辨率 = 占空比变化步距

三、输出比较通道(通用)

四、输出比较通道(高级)

五、输出比较模式

六、PWM基本结构 

七、PWM参数计算

八、外设介绍

8.1 舵机

8.2 直流电机及驱动

九、开发步骤

①RCC打开时钟,TIM和GPIO外设的时钟打开

②配置时基单元,包括前面的时钟源选择

③结构体配置输出比较单元(CCR,输出比较模式,极性选择,输出使能)

④配置GPIO,PWM对应GPIO初始化为复用推挽输出

⑤运行控制,启动计数器

十、输出比较库函数 

注:标@的为重要,需掌握

@===================输出比较4模块配置函数==============================

void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);

参数:①定时器;②结构体

=====================================================================

void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct);

//输出比较结构体赋初值

=====================配置强制输出模式(了解即可)========================

void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);

=============配置CCR寄存器的预装功能(影子寄存器)(了解即可)=============

void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);

=======================配置快速使能(了解即可)==========================

void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);

=======================外部事件清除REF信号(了解即可)===================

void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);

=======================单独设置输出比较极性=============================

void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);

//N高级定时器互补通道的配置
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);

=======================单独修改输出使能参数=============================

void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx);
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN);

=======================单独更改输出比较模式=============================

void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode);

@=====================单独更改CCR寄存器值=============================

void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4);

==========================补充========================================

void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState);

//仅高级定时器使用,在使用高级定时器输出PWM时,需要调用这个函数,使能主输出,否则PWM将不能正常输出

十一、实验

9.1 PWM驱动LED呼吸灯

PWM.c

#include "stm32f10x.h"                  // Device header

/*PWM初始化*/
void PWM_Init(void)
{
	/*一、RCC开启时钟,TIM与GPIO时钟打开*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
//	/*使用重映射(*_*)*/
//	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);
//	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2,ENABLE);//PA0->PA15,部分重映射S
//	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);//解除JATG调试
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽输出
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;//(*_*)GPIO_Pin_15
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	/*二、配置时基单元(时钟源选择和时基单元配置)*/
	TIM_InternalClockConfig(TIM2);//选择内部时钟
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR自动重装器值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;	//PSC预分频器值
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;//重复计数器值
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
	
	/*三、配置输出比较单元(CCR的值(捕获/比较器),输出比较模式,极性选择,输出使能)*/
	TIM_OCInitTypeDef TIM_OCInitStructure;
	TIM_OCStructInit(&TIM_OCInitStructure);//给结构体所有成员赋初始值(有些用不到但是必须赋值)
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//输出比较模式
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//输出比较的极性
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;//设置CCR
	TIM_OC1Init(TIM2,&TIM_OCInitStructure);
	
	/*四、配置GPIO,复用推挽输出*/
	//一处已操作
	
	/*五、运行控制,启动计数器CNT*/
	TIM_Cmd(TIM2,ENABLE);
}
	
/*封装函数->更改CCR值来改变占空比*/
void PWM_SetCompare1(uint16_t Compare)
{
	TIM_SetCompare1(TIM2,Compare);
}

PWM.h

#ifndef __PWM_H
#define __PWM_H

void PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"

uint8_t i;

int main(void)
{
	OLED_Init();
	PWM_Init();
	
	while (1)
	{
		//CCR增大,逐渐变亮
		for (i = 0; i <= 100; i++)
		{
			PWM_SetCompare1(i);
			Delay_ms(10);
		}
		//CCR减小,逐渐变暗
		for (i = 0; i <= 100; i++)
		{
			PWM_SetCompare1(100 - i);
			Delay_ms(10);
		}
	}
}

9.2 PWM驱动舵机

实验现象:按下按键,舵机转动固定角度

PWM.c

#include "stm32f10x.h"                  // Device header

/*PWM初始化*/
void PWM_Init(void)
{
	/*一、RCC开启时钟,TIM与GPIO时钟打开*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽输出
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	/*二、配置时基单元(时钟源选择和时基单元配置)*/
	TIM_InternalClockConfig(TIM2);//选择内部时钟
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;		//ARR自动重装器值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;	//PSC预分频器值
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;//重复计数器值
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
	
	/*三、配置输出比较单元(CCR的值(捕获/比较器),输出比较模式,极性选择,输出使能)*/
	TIM_OCInitTypeDef TIM_OCInitStructure;
	TIM_OCStructInit(&TIM_OCInitStructure);//给结构体所有成员赋初始值(有些用不到但是必须赋值)
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//输出比较模式
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//输出比较的极性
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;//设置CCR(500~2500)
	TIM_OC2Init(TIM2,&TIM_OCInitStructure);
	
	/*四、配置GPIO,复用推挽输出*/
	//一处已操作
	
	/*五、运行控制,启动计数器CNT*/
	TIM_Cmd(TIM2,ENABLE);
}
	
/*封装函数->更改CCR值来改变占空比*/
void PWM_SetCompare2(uint16_t Compare)
{
	TIM_SetCompare2(TIM2,Compare);
}

PWM.h

#ifndef __PWM_H
#define __PWM_H

void PWM_Init(void);
void PWM_SetCompare2(uint16_t Compare);

#endif

Servo.c

#include "stm32f10x.h"                  // Device header
#include "PWM.h"

//舵机初始化(PWM初始化)
void Servo_Init(void)
{
	PWM_Init();
}

/*
舵机设置角度
角度:0-180
CCR:500-2500
*/
void Servo_SetAngle(float Angle)
{
	PWM_SetCompare2(Angle / 180 * 2000 + 500);
}

Servo.h

#ifndef __SERVO_H
#define __SERVO_H

void Servo_Init(void);
void Servo_SetAngle(float Angle);

#endif

Key.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"

//===按键初始化===//
void Key_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;//上拉输入
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB,&GPIO_InitStructure);
}

//===获取按键返回码===//
uint8_t Key_GetNum(void)
{
	uint8_t KeyNum = 0;
	if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_1) == 0)
	{
		Delay_ms(20);//消抖
		while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_1) == 0);//如果不松手则卡着
		Delay_ms(20);
		KeyNum = 1;
	}	
	if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11) == 0)
	{
		Delay_ms(20);//消抖
		while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11) == 0);
		Delay_ms(20);
		KeyNum = 2;
	}
	return KeyNum;
}

key.h

#ifndef __KEY_H
#define __KEY_H

void Key_Init(void);
uint8_t Key_GetNum(void);
	
#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "key.h"
#include "Servo.h"

uint8_t KeyNum;
float Angle;

int main(void)
{
	OLED_Init();
	Key_Init();
	Servo_Init();
	
	OLED_ShowString(1,1,"Angle:");
	
	
	while (1)
	{
		KeyNum = Key_GetNum();
		if(KeyNum == 1)
		{
			Angle += 30;
			if(Angle >180)
			{
				Angle = 0;
			}
		}
		Servo_SetAngle(Angle);
		OLED_ShowNum(1,7,Angle,3);
	}
}

*OLED显示屏代码请参考本专栏文章STM32-OLED显示屏

9.3 PWM驱动直流电机

实验现象: 按键按下,电机加速,达到最大转速时,再按一下,最大速度反转,按下按键,电机减速

PWM.c

#include "stm32f10x.h"                  // Device header

/*PWM初始化*/
void PWM_Init(void)
{
	/*一、RCC开启时钟,TIM与GPIO时钟打开*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);

	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽输出
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	/*二、配置时基单元(时钟源选择和时基单元配置)*/
	TIM_InternalClockConfig(TIM2);//选择内部时钟
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR自动重装器值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;	//PSC预分频器值
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;//重复计数器值
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
	
	/*三、配置输出比较单元(CCR的值(捕获/比较器),输出比较模式,极性选择,输出使能)*/
	TIM_OCInitTypeDef TIM_OCInitStructure;
	TIM_OCStructInit(&TIM_OCInitStructure);//给结构体所有成员赋初始值(有些用不到但是必须赋值)
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//输出比较模式
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//输出比较的极性
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;//设置CCR
	TIM_OC3Init(TIM2,&TIM_OCInitStructure);
	
	/*四、配置GPIO,复用推挽输出*/
	//一处已操作
	
	/*五、运行控制,启动计数器CNT*/
	TIM_Cmd(TIM2,ENABLE);
}
	
/*封装函数->更改CCR值来改变占空比*/
void PWM_SetCompare3(uint16_t Compare)
{
	TIM_SetCompare3(TIM2,Compare);
}

PWM.h

#ifndef __PWM_H
#define __PWM_H

void PWM_Init(void);
void PWM_SetCompare3(uint16_t Compare);

#endif

Motor.c

#include "stm32f10x.h"                  // Device header
#include "PWM.h"


void Motor_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	PWM_Init();
}

/*设置电机速度(-100~100)*/
void Motor_SetSpeed(int8_t Speed)
{
	if(Speed >= 0)
	{
		GPIO_SetBits(GPIOA,GPIO_Pin_4);
		GPIO_ResetBits(GPIOA,GPIO_Pin_5);
		PWM_SetCompare3(Speed);
	}
	else
	{
		GPIO_SetBits(GPIOA,GPIO_Pin_5);
		GPIO_ResetBits(GPIOA,GPIO_Pin_4);
		PWM_SetCompare3(-Speed);
	}
}

Motor.h

#ifndef __PWM_H
#define __PWM_H

void Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);

#endif

*按键与OLED显示屏的代码参考之前实验代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1300540.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TCP数据粘包的处理

TCP数据粘包的处理 背锅侠TCP解决方案2.1 发送端2.2 接收端 背锅侠TCP 在前面介绍套接字通信的时候说到了TCP是传输层协议&#xff0c;它是一个面向连接的、安全的、流式传输协议。因为数据的传输是基于流的所以发送端和接收端每次处理的数据的量&#xff0c;处理数据的频率可…

springboot084基于springboot的论坛网站

springboot084基于springboot的论坛网站 源码获取&#xff1a; https://docs.qq.com/doc/DUXdsVlhIdVlsemdX

[香橙派]orange pi zero 3 烧录Ubuntu系统镜像——无需HDMI数据线安装

一、前言 本文我们将介绍如何使用orange pi zero 3 安装Ubuntu系统&#xff0c;本文相关步骤均参考自开发手册。 二、实施准备 根据开发手册中所提到的&#xff0c;我们应该拥有如下配件: 1.orange pi zero 3 开发板 2.TF 卡——最小 8GB 容量的 class10 级或以上的高速闪迪卡。…

十大排序算法讲解

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

ActiveMQ任意文件写入漏洞(CVE-2016-3088)

简述&#xff1a;ActiveMQ的fileserver支持写入文件(但是不支持解析jsp),同时也支持移动文件。所以我们只需要先上传到服务器&#xff0c;然后再移动到可以解析的地方即可造成任意文件写入漏洞。我们可以利用这个漏洞来上传webshell或者上传定时任务文件。 漏洞复现 启动环境 …

一个例子带你入门影刀编码版(一)

文章结构 摘要需求分析伪代码编写代码实现完整代码相关链接 摘要 将通过一个电商业务场景下的真实需求&#xff0c;带领大家零基础入门影刀编码版&#xff0c;本系列将会分三步讲解&#xff0c;从接到需求到最后完成发版&#xff0c;整个过程中我们需要做些什么&#xff1f;带…

网页设计中增强现实的兴起

目录 了解增强现实 增强现实的历史背景 AR 和网页设计的交叉点 AR 在网页设计中的优势 增强参与度和互动性 个性化的用户体验 竞争优势和品牌差异化 AR 在网页设计中的用例 结论 近年来&#xff0c;增强现实已成为一股变革力量&#xff0c;重塑了我们与数字领域互动的方式。它被…

2023北京智慧城市与电气高峰论坛-安科瑞 蒋静

2023年7月27日&#xff0c;北京土木建筑学会电气设计委员会、北京电气设计技术协作及情报交流网联合举办的“北京电气设计第43届年会”在京盛大召开。安科瑞作为企业微电网能效管理平台服务商与广大同仁共聚本次盛会&#xff0c;尽享技术盛宴。 本次会议采用线上线下相结合&…

Spring JDBC和事务管理

Spring JDBC是Spring框架用来处理关系型数据库的模块&#xff0c;对JDBC的API进行了封装。 Spring JDBC的核心类为JdbcTemplate&#xff0c;提供数据CRUD方法 Spring JDBC使用步骤 Maven工程引入依赖spring-jdbc <dependency><groupId>org.springframework<…

logstash插件简单介绍

logstash插件 输入插件(input) Input&#xff1a;输入插件。 Input plugins | Logstash Reference [8.11] | Elastic 所有输入插件都支持的配置选项 SettingInput typeRequiredDefaultDescriptionadd_fieldhashNo{}添加一个字段到一个事件codeccodecNoplain用于输入数据的…

代码随想录二刷 |二叉树 | 二叉树的右视图

代码随想录二刷 &#xff5c;二叉树 &#xff5c; 二叉树的右视图 题目描述解题思路代码实现 题目描述 199.二叉树的右视图 给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 示例…

【vtkWidgetRepresentation】第八期 vtkImplicitCylinderRepresentation

很高兴在雪易的CSDN遇见你 前言 本文分享vtkImplicitCylinderRepresentation&#xff0c;主要从源码解析、和实际应用方面展开&#xff0c;希望对各位小伙伴有所帮助&#xff01; 感谢各位小伙伴的点赞关注&#xff0c;小易会继续努力分享&#xff0c;一起进步&#xff01; …

基于PLC的电梯控制系统(论文+源码)

1.系统设计 电梯采用了PLC控制方式&#xff0c;通过对PLC进行逻辑程序设计&#xff0c;电梯不仅在控制水平上得到了质的提升&#xff0c;同时在安全性上也得到了大大提高。控制系统在构造上实现了简洁化&#xff0c;不仅优化了硬件接线方便了线路施工&#xff0c;同时对控制要…

Java设计模式分类

java的设计模式大体上分为三大类&#xff1a; 创建型模式&#xff08;5种&#xff09;&#xff1a;工厂方法模式&#xff0c;抽象工厂模式&#xff0c;单例模式&#xff0c;建造者模式&#xff0c;原型模式。 结构型模式&#xff08;7种&#xff09;&#xff1a;适配器模式&am…

51单片机的内核架构组成 介绍

对于51单片机相信很多电子信息或者相关专业的朋友应该都不会感觉陌生&#xff0c;很多专业在大学课程中开设的单片机课程就是使用的51单片机进行授课和学习的。51单片机的内容相较于其他高性能复杂的单片机来说&#xff0c;架构相对简单一些&#xff0c;寄存器也少很多&#xf…

【FMCW毫米波雷达设计 】 — FMCW波形

原书&#xff1a;FMCW Radar Design 1 引言 本章研究驱动FMCW雷达的主要波形:线性调频(LFM)波形。我们研究信号的行为及其性质。随后&#xff0c;本章讨论了匹配滤波理论&#xff0c;并研究了压缩这种波形的技术&#xff0c;特别是所谓的拉伸处理&#xff0c;它赋予FMCW雷达极…

【STM32】电机驱动

一、电机分类 二、直流电机的分类 1.有刷电机 2.无刷电机 3.直流减速电机 三、H桥电路 正向旋转 驱动Q1和Q4 反向旋转 驱动Q2和Q3 四、MC3386电机驱动芯片 1.基本原理图 1&#xff09;前进/后退&#xff1a;IN1和IN2的电平顺序决定电机的正反转 2&#xff09;调节速度&#…

深入了解对象与内置构造函数

1. 深入对象 1.1 创建对象的三种方式 1.2 构造函数 语法约定&#xff1a; 总结 构造函数可以快速创建多个对象大写字母开头的函数使用new关键字将对象实例化构造函数不需要返回值自动返回新的对象 new实例化的执行过程 创建空对象this指向对象执行代码&#xff0c;追加新…

AX和A(T)X的区别是?

目录 1.快速了解的例子&#xff1a; &#xff08;1&#xff09;假设所有节点的初始特征都是[1, 0, 0] &#xff0c;那么AX的结果是&#xff1a; &#xff08;2&#xff09; 的结果是&#xff1a; (3) 总结&#xff1a; 2.计算结构系数的例子 &#xff08;1&#xff09…

Spring IoC和DI

目录 一. Spring是什么 IoC DI 二. IoC&DI的使用 IoC 1.Controller&#xff08;控制器存储&#xff09; 2.Service&#xff08;服务存储&#xff09; 3.Repository&#xff08;仓库存储&#xff09; 4.Componemt&#xff08;组件存储&#xff09; 5.Configuratio…