Linux——缓冲区与实现C库的fopen,fwrite,fclose

news2024/11/29 13:44:59

目录

一.缓冲区

1缓冲区的概念

2.缓冲区存在的意义

3.缓冲区刷新策略   

4.什么是刷新?

C语言的缓冲区在哪里?

​编辑

仿写C库里的fopen,fclose,fwrite。

mystdio.h

mystdio.c

main.c(向文件中写入20次msg)


一.缓冲区

1缓冲区的概念

缓冲区的本质就是一段内存

2.缓冲区存在的意义

提高使用者的效率

同时因为缓冲区的存在也提高了操作系统的效率

举例一个例子:
 

假如你在云南要给你北京的朋友寄东西。方法一:你可以亲自己去北京把东西交给他,方法二:把东西给快递站,让它帮你送给他。

这里虽然整个事件持续的事件基本一样,但是对于你来说方法二比方法一效率要高的多,因为你只需要把东西交给快递站,对于你来说就结束了,接下来就可以做其他事情了。而快递站,也会根据你的需求以及自身制定发送快递的策略,不会收到一个快递就发送。

这里:你就是正在执行的进程,快递站是缓冲区。朋友就是文件,快递发送策略:缓冲区刷新策略


3.缓冲区刷新策略   

     1,无缓冲(立即刷新)--fflush()

   2,行缓存(行刷新)--遇到换行就刷新

一般对于显示器文件,采用行刷新

   3,全缓冲(缓冲区满了,再刷新)

磁盘文件采用全缓冲

特殊情况:

1.强制刷新

2.进程退出时,一般要进行刷新缓冲区(属于强制刷新的一种特殊情况)

一个例子:(同一份代码不同结果)

#include <stdio.h>
#include <string.h>
#include <unistd.h>

int main()
{
    fprintf(stdout, "C: hello fprintf\n");
    printf("C: hello printf\n");
    fputs("C: hello fputs\n", stdout);
    const char *str = "system call: hello write\n";
    write(1, str, strlen(str));

    fork(); // 注意fork的位置!
    return 0;
}

可以看出,当重定向到log.txt文件时,除了系统函数write之外,都重复了两次。且write打印的内容在最前面

解释:

1.当我们直接向显示器打印时,显示器文件的刷新方式是行刷新!而且你的代码输出所有字符串都有‘\n’,fork之前,数据就全部被刷新,包括systemcall

2.重定向到log.txt,本质是向磁盘文件中写入(不是显示器!),我们系统对于数据的刷新方式有行刷新,变成了全缓冲!

3.全缓冲意味着缓冲区变大,实际写入的简单数据,不足以把缓冲区写满,fork执行的时候,数据依旧在缓冲区中。

4.我们目前的“缓冲区”,和操作系统是没有关系的 ,只能是语言本身有关,(用户缓冲区)

5.C/C++ 所提供的缓冲区,里面一定保存的是用户数据,属于当前进程在运行自己的数据

如果我们把数据交给操作系统,这个数据就属于操作系统,不属于自己(进程)。

6.当进程退出的时候一般要刷新缓冲区(修改了进程的数据),即使你的数据没有满足刷新条件。

总结:

因此在重定向后,由于变为全缓冲,C语言函数里要打印的东西就成为数据保存在C语言的缓冲区里,接着调用了fork函数创建了子进程,这时无论那个进程在退出前,都会刷新缓冲区(修改数据据,)向文件写入数据,接着就会发生写时拷贝,未退出的进程的数据中让然有之前缓冲区的数据,当这个进程退出是,还会刷新缓冲区,向文件写入数据。因此C语言函数的内容会打印两次。

write是系统调用函数,不使用C语言的缓冲区,直接写入操作系统,不属于进程,不发生写时拷贝!同时,这也是为什么write里的内容第一个打印到log.txt文件里。

4.什么是刷新?

这里我们用printf()函数举例。

在使用printf时,我们会把数据先弄到C语言的缓冲区,当出发刷新的条件时,就调用系统函数write,将缓冲区里的数据全部刷新到文件缓冲区里。而将C语言缓冲区里的数据弄到文件缓冲区里的的过程就是刷新。

为什么要采用刷新,而不是直接通过C语言函数,向文件缓冲区直接写入?

原因:采用刷新策略的效率比直接写入效率高。

文件缓冲区的数据如何刷新到文件上?

这个操作与我们无关,取决于操作系统,但是我们可以确定一点,文件缓冲区的刷新策略一定与语言缓冲区的刷新策略不同

C语言的缓冲区在哪里?

在任何情况下,我们输入输出的时候,都要有一个FILE,FILE是一个结构体,FILE里面除了包含fd(文件标识符)外,还有一段缓冲区。同时也是因此每打开一个文件,对应文件就会有个文件缓冲区,在我们对多个文件进行操作是,因为操作的缓冲区不同,是文件之间不会相互影响。

这里如果你想查看FILE结构体里有关缓冲区的内容,可以输入指令:

vim /usr/include/libio.h +246

结构体名是_IO_FILE与是C库对FILE使用typedef重命名了。

具体可通过指令:

vim /usr/include/stdio.h

打开文件后到第48行查看

仿写C库里的fopen,fclose,fwrite。

mystdio.h

#pragma once

#define SIZE 4096        //缓冲区的大小

//缓冲区刷新策略

#define FLUSH_NONE 1         //直接刷新
#define FLUSH_LINE (1<<1)    //行刷新
#define FLUSH_ALL  (1<<2)    //全缓冲


typedef struct _myFILE     //FILE结构体
{
    int fileno;         //文件标识符
    int flag;           //刷新策略
    char buffer[SIZE];  //语言缓冲区
    int end;            //缓冲区存储数据的大小
}myFILE;


extern myFILE *my_fopen(const char *path, const char *mode);   //仿写fopen

extern int my_fwrite(const char *s, int num, myFILE *stream);  //仿写fwrite

extern int my_fflush(myFILE *stream);                          //仿写fflush

extern int my_fclose(myFILE*stream);                           //仿写fclose



mystdio.c

#include "mystdio.h"
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>

#define DFL_MODE 0666   //设置默认权限

myFILE *my_fopen(const char *path, const char *mode)
{
    int fd   = 0;   
    int flag = 0;


    //设置文件打开方式

    if(strcmp(mode, "r") == 0)
    {
        flag |= O_RDONLY;
    }
    else if(strcmp(mode, "w") == 0)
    {
        flag |= (O_CREAT | O_TRUNC | O_WRONLY);
    }
    else if(strcmp(mode, "a") == 0)
    {
        flag |= (O_CREAT | O_WRONLY | O_APPEND);
    }
    else{
        // Do Nothing
    }




    //文件不存在,创建文件并打开,并获取文件标识符与设置默认权限
    if(flag & O_CREAT)
    {
        fd = open(path, flag, DFL_MODE);
    }

    //文件存在,打开文件,获取文件标识符
    else
    {
        fd = open(path, flag);
    }

    //判断文件是否打开成功
    if(fd < 0)
    {
        errno = 2;
        return NULL;
    }

    

    //为FILE指针开辟空间
    myFILE *fp = (myFILE*)malloc(sizeof(myFILE));
    if(!fp) 
    {
        errno = 3;
        return NULL;
    }

    //对FILE内容初始化
    fp->flag = FLUSH_LINE;
    fp->end = 0;
    fp->fileno = fd;
    return fp;
}



int my_fwrite(const char *s, int num, myFILE *stream)  //仿写fwrite
{

    // 将数据写入C语言缓冲区
    memcpy(stream->buffer+stream->end, s, num);
    stream->end += num;


// 判断是满足刷新条件, 这里我默认'\n'只会出现在结尾,在"abcd\nefgh"这种情况下会有bug
    if((stream->flag & FLUSH_LINE) && stream->end > 0 && stream->buffer[stream->end-1] == '\n')
    {
        my_fflush(stream);
    }

    return num;
}


int my_fflush(myFILE *stream)//仿写fflush
{
    //当缓冲区不为空时,刷新缓冲区
    if(stream->end > 0)
    {
        write(stream->fileno, stream->buffer, stream->end);
        //fsync(stream->fileno);
        stream->end = 0;
    }

    return 0;
}


int my_fclose(myFILE*stream)   //仿写fclose
{
    my_fflush(stream);        //强制刷新
    return close(stream->fileno);
}

main.c(向文件中写入20次msg)

#include "mystdio.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>

int main()
{
    myFILE *fp = my_fopen("./log.txt", "w");
    if(fp == NULL)
    {
        perror("my_fopen");
        return 1;
    }
    int cnt = 20;
    const char *msg = "haha, this is my stdio lib";
    while(cnt--){
        my_fwrite(msg, strlen(msg), fp);
        sleep(1);
    }
    my_fclose(fp);
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1299933.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

stack容器

stack容器 文章目录 stack容器一、头文件二、stack基本概念三、stack常用接口 一、头文件 #include <stack>二、stack基本概念 概念: stack是一种先进后出(First In Last Out,FILO)的数据结构&#xff0c;它只有一个出口 栈中只有顶端的元素才可以被外界使用&#xff0…

C++『异常』

✨个人主页&#xff1a; 北 海 &#x1f389;所属专栏&#xff1a; C修行之路 &#x1f383;操作环境&#xff1a; Visual Studio 2022 版本 17.6.5 文章目录 &#x1f307;前言&#x1f3d9;️正文1.异常基本概念1.1.C语言异常处理方式1.2.C异常处理方式 2.异常的使用2.1.异常…

perl单行命令统计项目中代码单行过长的信息

项目中单行代码太长是不便于阅读和维护的&#xff0c;这里用perl单行命令实现项目中的单行过长的代码信息统计&#xff0c;方便修改。为方便说明&#xff0c;这里以一个开源项目为例&#xff0c;github链接evpp。以commit id 477033f938fd47dfecde43c82257cd286d9fa38e 为例&am…

陀螺仪LSM6DSV16X与AI集成(4)----Qvar触摸电容配置

陀螺仪LSM6DSV16X与AI集成.4--Qvar触摸电容配置 概述视频教学样品申请源码下载生成STM32CUBEMX串口配置IIC配置CS和SA0设置串口重定向参考程序初始换管脚获取ID复位操作BDU设置Qvar 功能的实现和配置设置量程和速率配置过滤链激活 Qvar 功能获取Qvar数据演示 概述 Qvar&#x…

2-5、包含多个段的程序

语雀原文链接 文章目录 1、概述2、代码段中使用数据示例1&#xff1a;不指定程序入口示例2&#xff1a;指定程序入口原理梳理 3、在代码段中使用栈例子1例子2 4、数据、代码、栈放入不同的段例子1&#xff1a;end start指定程序入口第一步&#xff1a;设置栈顶第二步&#xff…

Golang channle(管道)基本介绍、快速入门

channel(管道)-基本介绍 为什么需要channel&#xff1f;前面使用全局变量加锁同步来解决goroutine的通讯&#xff0c;但不完美 1)主线程在等待所有goroutine全部完成的时间很难确定&#xff0c;我们这里设置10秒&#xff0c;仅仅是估算。 2)如果主线程休眠时间长了&#xff0c…

tgf - 一个开箱即用的golang游戏服务器框架

tgf框架 tgf框架是使用golang开发的一套游戏分布式框架.属于开箱即用的项目框架,目前适用于中小型团队,独立开发者,快速开发使用.框架提供了一整套开发工具,并且定义了模块开发规范.开发者只需要关注业务逻辑即可,无需关心用户并发和节点状态等复杂情况. 使用介绍 创建业务逻辑…

m1通过源码编译xgboost4j的jar

1、下载源码 git clone --recursive https://github.com/dmlc/xgboost cd xgboost 编译xgboost的动态链接库dylib&#xff0c;m1源码编译xgboost的动态链接库dylib文件 2、编译XGBoost的jar文件&#xff1a; A、如果没有安装maven可以通过以下命令进行安装&#xff0c;如果安…

邮件营销软件:10个创新邮件营销策略,提升投资回报率(一)

电子商务和电子邮件营销密不可分。尽管电子商务在蓬勃发展&#xff0c;而很多人对邮件营销颇有微词。但是在电子商务中&#xff0c;邮件营销的确是一种有效营销方式。在本文中&#xff0c;我们将讨论一下邮件营销在电子商务中的有效运用&#xff0c;帮助您的企业在今年尽可能地…

045:Vue读取本地上传JSON文件,导出JSON文件方法

第045个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

HibernateJPA快速搭建

1. 先创建一个普通Maven工程&#xff0c;导入依赖 <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test</scope></dependency><depe…

windows 10多用户同时远程登陆配置【笔记】

系统环境&多用户访问情况&#xff1a; 1、【win】【R】键入【gpedit.msc】 2、依次选择【计算机配置】→ 【管理模板】 → 【Windows组件】 → 【远程桌面服务】 → 【远程桌面会话主机】 →【连接】 2.1、右键 【允许用户通过使用远程桌面服务进行远程连接】 编辑 …

Go语言基础知识学习(一)

Go基本数据类型 bool bool型值可以为true或者false,例子&#xff1a; var b bool true数值型 类型表示范围int8有符号8位整型-128 ~ 127int16有符号16位整型-32768 ~ 32767int32有符号32位整型-2147783648 ~ 2147483647int64有符号64位整型uint8无符号8位整型0 ~ 255uint16…

linux通过命令切换用户

在Linux中&#xff0c;你可以使用su&#xff08;substitute user或switch user&#xff09;命令来切换用户。这个命令允许你临时或永久地以另一个用户的身份运行命令。以下是基本的用法&#xff1a; 基本切换到另一个用户&#xff08;需要密码&#xff09;&#xff1a;su [用户…

C# 静态构造函数与类的初始化

静态构造函数&#xff1a; 基本概念&#xff1a; 静态构造函数用于初始化任何静态数据。 静态构造函数的常见特性&#xff1a; 静态构造函数不使用访问修饰符或不具有参数。因为静态构造函数由系统调用&#xff0c;无法人为调用&#xff0c;所以就不存在public、private等。…

Gazebo 跟踪8字形和U形轨迹(1) — 错误处理

Gazebo 跟踪8字形和U形轨迹(1) — 错误处理 整个过程还是比较曲折的&#xff0c;主要都是一些细小的问题&#xff0c;跑了很多遍模型才发现 参考轨迹生成问题不大&#xff0c;主要是参考横摆角和参考曲率部分有问题 atan和atan2 首先看下两者的区别 atan 函数&#xff1a;…

智能监控型电源老化房方案

电源适配器专用老化房主要适用于充电器等电源成品&#xff08;半成品&#xff09;作一般性老化测试。其负载主体采用程控式电子负载&#xff0c;保证其稳定度和可调节性。该老化车配备电脑操作监控系统。 模拟量采集/老化房采集软件 一、老化房功能&#xff1a; 1 负载主体&am…

32.768KHz时钟RTC晶振精度PPM值及频差计算

一个数字电路就像一所城市的交通&#xff0c;晶振的作用就是十字路口的信号灯&#xff0c;因此晶振的品质及其电路应用尤其关键。数字电路又像生命体&#xff0c;它的运行就像人身体里的血液流通&#xff0c;它不是由单一的某个器件或器件单元构成&#xff0c;而是由多个器件及…

xtts和ogg不选择?

不选择ogg的理由&#xff1a; 1.需要在源端创建用户赋权&#xff0c;启用数据库最小日志&#xff0c;附加日志等操作--对生产影响较大 2.外键约束过多&#xff0c;割接启用可能很慢https://www.modb.pro/db/201126--割接停机时间影响 3.初始化配置expdp导出可能快照过旧&#x…

11.光线追踪

1.为什么要引入光线追踪 光栅化阶段有些全局效果做的并不好&#xff0c;首先不太好做软阴影&#xff0c;然后是类镜面反射&#xff0c;表面很光滑但是又达不到镜面反射那么光滑&#xff0c;光线反射到这类物体上之后会经过好几次反射&#xff0c;其次是间接光照&#xff0c;光…