(六)五种最新算法(SWO、COA、LSO、GRO、LO)求解无人机路径规划MATLAB

news2024/11/17 5:45:09

一、五种算法(SWO、COA、LSO、GRO、LO)简介

1、蜘蛛蜂优化算法SWO

蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为,具有搜索速度快,求解精度高的优势。VRPTW(MATLAB):蜘蛛蜂优化算法SWO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

[1]Abdel-Basset, M., Mohamed, R., Jameel, M. et al. Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm | SpringerLink

2、小龙虾优化算法COA

小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡全局搜索和局部搜索的能力。多目标优化算法:基于非支配排序的小龙虾优化算法(NSCOA)MATLAB-CSDN博客

参考文献:

[1] Jia, H., Rao, H., Wen, C. et al. Crayfish optimization algorithm. Artif Intell Rev (2023). Crayfish optimization algorithm | SpringerLink

3、光谱优化算法LSO

光谱优化算法(Light Spectrum Optimizer,LSO)由Mohamed Abdel-Basset等人于2022年提出。MD-MTSP:光谱优化算法LSO求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)-CSDN博客

参考文献:

[1]Abdel-Basset M, Mohamed R, Sallam KM, Chakrabortty RK. Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm. Mathematics. 2022; 10(19):3466. Mathematics | Free Full-Text | Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm

4、淘金优化算法GRO

淘金优化算法(Gold rush optimizer,GRO)由Kamran Zolf于2023年提出,其灵感来自淘金热,模拟淘金者进行黄金勘探行为。VRPTW(MATLAB):淘金优化算法GRO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

K. Zolfi. Gold rush optimizer: A new population-based metaheuristic algorithm. Operations Research and Decisions 2023: 33(1), 113-150. DOI 10.37190/ord230108

5、狐猴优化算法

狐猴优化算法(Lemurs Optimizer,LO)由Ammar Kamal Abasi等人于2022年提出,该算法模拟狐猴的跳跃和跳舞行为,具有结构简单,思路新颖,搜索速度快等优势。单目标应用:基于狐猴优化算法(Lemurs Optimizer,LO)的微电网优化调度MATLAB-CSDN博客

参考文献:

[1]Abasi AK, Makhadmeh SN, Al-Betar MA, Alomari OA, Awadallah MA, Alyasseri ZAA, Doush IA, Elnagar A, Alkhammash EH, Hadjouni M. Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization. Applied Sciences. 2022; 12(19):10057. Applied Sciences | Free Full-Text | Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

二、模型简介

单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客

参考文献:

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

三、SWO、COA、LSO、GRO、LO求解无人机路径规划

(1)部分代码

close all
clear  
clc
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F1'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=100; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
AlgorithmName={'SWO','COA','LSO','GRO','LO'};%算法名称
addpath('./AlgorithmCode/')%添加算法路径
bestFit=[];%保存各算法的最优适应度值
for i=1:size(AlgorithmName,2)%遍历每个算法,依次求解当前问题
Algorithm=str2func(AlgorithmName{i});%获取当前算法名称,并将字符转换为函数
[Best_score,Best_pos,Convergence_curve]=Algorithm(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%当前算法求解
%将当前算法求解结果放入data中
data(i).Best_score=Best_score;%保存该算法的Best_score到data
data(i).Best_pos=Best_pos;%保存该算法的Best_pos到data
data(i).Convergence_curve=Convergence_curve;%保存该算法的Convergence_curve到data
bestFit=[bestFit data(i).Best_score];
end
save data data
%%  画各算法的直方图
figure 
bar(bestFit)
ylabel('无人机飞行路径长度');
set(gca,'xtick',1:1:size(AlgorithmName,2));
set(gca,'XTickLabel',AlgorithmName)
saveas(gcf,'./Picture/直方图.jpg') %将图片保存到Picture文件夹下面


%%  画收敛曲线
strColor={'r--','g-','b-.','k--','m:','c-','y-'};
figure
for i=1:size(data,2)
plot(data(i).Convergence_curve,strColor{i},'linewidth',1.5)%semilogy
hold on
end
xlabel('迭代次数');
ylabel('无人机飞行路径长度');
legend(AlgorithmName,'Location','Best')
saveas(gcf,'./Picture/收敛曲线.jpg') %将图片保存到Picture文件夹下面


%% 显示三维图并保存
path=plotFigure(data,AlgorithmName,strColor);%path是各算法求解的无人机路径
saveas(gcf,'./Picture/路径曲线(三维).jpg') %将图片保存到Picture文件夹下面
save path path
%% 显示二维图并保存
view(2)
saveas(gcf,'./Picture/路径曲线(二维).jpg') %将图片保存到Picture文件夹下面

%% 显示三维图
path=plotFigure(data,AlgorithmName,strColor);%三维图 path是各算法求解的无人机路径




(2)部分结果

四、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1299083.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DataFrame的使用

查看数据类型及属性 # 查看df类型 type(df) # 查看df的shape属性,可以获取DataFrame的行数,列数 df.shape # 查看df的columns属性,获取DataFrame中的列名 df.columns # 查看df的dtypes属性,获取每一列的数据类型 df.dtypes df.i…

模型能力赋能搜索——零样本分类(Zero-Shot Classification)在搜索意图识别上的探索

什么是Zero-Shot Classification https://huggingface.co/tasks/zero-shot-classification hugging face上的零样本分类模型 facebook/bart-large-mnli https://huggingface.co/facebook/bart-large-mnli 当然这是一个英文模型,我们要去用一些多语言的模型。 可以在…

Android 样式小结

关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、使用3.1 创建并应用样式3.2 创建并…

Azure Machine Learning - 使用 Azure OpenAI 服务生成图像

在浏览器/Python中使用 Azure OpenAI 生成图像,图像生成 API 根据文本提示创建图像。 关注TechLead,分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员&#x…

点击el-tree小三角后去除点击后的高亮背景样式,el-tree样式修改

<div class"videoTree" v-loading"loadingTree" element-loading-text"加载中..." element-loading-spinner"el-icon-loading" element-loading-background"rgba(0, 0, 0, 0.8)" > <el-tree :default-expand-all&q…

可视化监控云平台/智能监控平台EasyCVR国标设备开启音频没有声音是什么原因?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。GB28181视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、云存…

Nacos源码解读09——配置中心配置信息创建修改怎么处理的

存储配置 从整体上Nacos服务端的配置存储分为三层&#xff1a; 内存&#xff1a;Nacos每个节点都在内存里缓存了配置&#xff0c;但是只包含配置的md5&#xff08;缓存配置文件太多了&#xff09;&#xff0c;所以内存级别的配置只能用于比较配置是否发生了变更&#xff0c;只用…

基于SSM实现的公文管理系统

一、技术架构 前端&#xff1a;jsp | jquery | bootstrap 后端&#xff1a;spring | springmvc | mybatis 环境&#xff1a;jdk1.8 | mysql | maven 二、代码及数据库 三、功能介绍 01. 登录页 02. 首页 03. 系统管理-角色管理 04. 系统管理-功能管理 05. 系统管理-用…

[数据启示录 02] 堆栈

堆栈&#xff08;stack&#xff09;是一种基于后进先出&#xff08;LIFO&#xff0c;Last In First Out&#xff09;原则的数据结构。它模拟了现实生活中的堆栈&#xff0c;类似于一摞盘子或一堆书。 堆栈有两个基本操作&#xff1a;入栈&#xff08;push&#xff09;和出栈&a…

前端面试——CSS面经(持续更新)

1. CSS选择器及其优先级 !important > 行内样式 > id选择器 > 类/伪类/属性选择器 > 标签/伪元素选择器 > 子/后台选择器 > *通配符 2. 重排和重绘是什么&#xff1f;浏览器的渲染机制是什么&#xff1f; 重排(回流)&#xff1a;当增加或删除dom节点&…

SLAM算法与工程实践——SLAM基本库的安装与使用(4):Sophus库

SLAM算法与工程实践系列文章 下面是SLAM算法与工程实践系列文章的总链接&#xff0c;本人发表这个系列的文章链接均收录于此 SLAM算法与工程实践系列文章链接 下面是专栏地址&#xff1a; SLAM算法与工程实践系列专栏 文章目录 SLAM算法与工程实践系列文章SLAM算法与工程实践…

数据结构之交换排序

目录 交换排序 冒泡排序 冒泡排序的时间复杂度 快速排序 快速排序单趟排序的时间复杂度 快速排序的时间复杂度 快速排序的优化 优化1&#xff1a;三数取中法 优化2&#xff1a;小区间优化法 交换排序 在日常生活中交换排序的使用场景是很多的&#xff0c;比如在学校做…

第76讲:MySQL数据库中常用的命令行工具的基本使用

文章目录 1.mysql客户端命令工具2.mysqladmin管理数据库的客户端工具3.mysqlbinlog查看数据库中的二进制日志4.mysqlshow统计数据库中的信息5.mysqldump数据库备份工具6.mysqllimport还原备份的数据7.source命令还原SQL类型的备份文件 MySQL数据库提供了很多的命令行工具&#…

Linux系统---简易伙伴系统

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、题目要求 1.采用C语言实现 2.伙伴系统采用free_area[11]数组来组织。要求伙伴内存最小为一个页面&#xff0c;页面大小为4KB…

2023年电工(初级)证模拟考试题库及电工(初级)理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年电工&#xff08;初级&#xff09;证模拟考试题库及电工&#xff08;初级&#xff09;理论考试试题是由安全生产模拟考试一点通提供&#xff0c;电工&#xff08;初级&#xff09;证模拟考试题库是根据电工&…

esxi全称“VMware ESXi

esxi全称“VMware ESXi”&#xff0c;是可直接安装在物理服务器上的强大的裸机管理系统&#xff0c;是一款虚拟软件&#xff1b;ESXi本身可以看做一个操作系统&#xff0c;采用Linux内核&#xff0c;安装方式为裸金属方式&#xff0c;可直接安装在物理服务器上&#xff0c;不需…

Kubernetes架构及核心部件

文章目录 1、Kubernetes集群概述1.1、概述1.2、通过声明式API即可 2、Kubernetes 集群架构2.1、Master 组件2.1.1、API Server2.1.2、集群状态存储2.1.3、控制器管理器2.1.4、调度器 2.2、Worker Node 组件2.2.1、kubelet2.2.2、容器运行时环境2.2.3、kube-proxy 2.3、图解架构…

大数据Doris(三十五):Unique模型(唯一主键)介绍

文章目录 Unique模型(唯一主键)介绍 一、创建doris表 二、插入数据

LANDSAT_7/02/T1/TOA的Landsat7_C2_TOA类数据集

Landsat7_C2_TOA数据集是将数据每个波段的辐射亮度值转换为大气层顶表观反射率TOA&#xff0c;是飞行在大气层之外的航天传感器量测的反射率&#xff0c;包括了云层、气溶胶和气体的贡献&#xff0c;可通过辐射亮度定标参数、太阳辐照度、太阳高度角和成像时间等几个参数计算得…

P9 LinuxC 进程概述 终端启动的程序父进程是终端

前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ &#x1f525; 推荐专栏2: 《Linux C应用编程&#xff08;概念类&#xff09;_ChenPi的博客-CSDN博客》✨✨✨ &#x1f6f8;推荐专栏3: ​​​​​​《链表_ChenP…