解释AI决策,这10个强大的 Python 库记得收藏!

news2025/1/21 4:45:40

本文整理了10个常用于可解释AI的Python库,方便我们更好的理解AI模型的决策。

什么是XAI?

XAI(Explainable AI)的目标是为模型的行为和决策提供合理的解释,这有助于增加信任、提供问责制和模型决策的透明度。XAI 不仅限于解释,还以一种使推理更容易为用户提取和解释的方式进行 ML 实验。

在实践中,XAI 可以通过多种方法实现,例如使用特征重要性度量、可视化技术,或者通过构建本质上可解释的模型,例如决策树或线性回归模型。方法的选择取决于所解决问题的类型和所需的可解释性水平。

AI 系统被用于越来越多的应用程序,包括医疗保健、金融和刑事司法,在这些应用程序中,AI 对人们生活的潜在影响很大,并且了解做出了决定特定原因至关重要。因为这些领域的错误决策成本很高(风险很高),所以XAI 变得越来越重要,因为即使是 AI 做出的决定也需要仔细检查其有效性和可解释性。

可解释性实践的步骤

数据准备: 这个阶段包括数据的收集和处理。数据应该是高质量的、平衡的并且代表正在解决的现实问题。拥有平衡的、有代表性的、干净的数据可以减少未来为保持 AI 的可解释性而付出的努力。

模型训练: 模型在准备好的数据上进行训练,传统的机器学习模型或深度学习神经网络都可以。模型的选择取决于要解决的问题和所需的可解释性水平。模型越简单就越容易解释结果,但是简单模型的性能并不会很高。

模型评估: 选择适当的评估方法和性能指标对于保持模型的可解释性是必要的。在此阶段评估模型的可解释性也很重要,这样确保它能够为其预测提供有意义的解释。

解释生成: 这可以使用各种技术来完成,例如特征重要性度量、可视化技术,或通过构建固有的可解释模型。

解释验证: 验证模型生成的解释的准确性和完整性。这有助于确保解释是可信的。

部署和监控: XAI 的工作不会在模型创建和验证时结束。它需要在部署后进行持续的可解释性工作。在真实环境中进行监控,定期评估系统的性能和可解释性非常重要。

技术交流

技术要学会交流、分享,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

好的文章离不开粉丝的分享、推荐,资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:dkl88194,备注:来自CSDN + 数据分析
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:数据分析

资料1
在这里插入图片描述
资料2

我们打造了《100个超强算法模型》,特点:从0到1轻松学习,原理、代码、案例应有尽有,所有的算法模型都是按照这样的节奏进行表述,所以是一套完完整整的案例库。

很多初学者是有这么一个痛点,就是案例,案例的完整性直接影响同学的兴致。因此,我整理了 100个最常见的算法模型,在你的学习路上助推一把!

在这里插入图片描述

1、SHAP (SHapley Additive exPlanations)

SHAP是一种博弈论方法,可用于解释任何机器学习模型的输出。它使用博弈论中的经典Shapley值及其相关扩展将最佳信用分配与本地解释联系起来。

在这里插入图片描述

2、LIME(Local Interpretable Model-agnostic Explanations)

LIME 是一种与模型无关的方法,它通过围绕特定预测在局部近似模型的行为来工作。LIME 试图解释机器学习模型在做什么。LIME 支持解释文本分类器、表格类数据或图像的分类器的个别预测。

在这里插入图片描述

3、Eli5

ELI5是一个Python包,它可以帮助调试机器学习分类器并解释它们的预测。它提供了以下机器学习框架和包的支持:

  • scikit-learn:ELI5可以解释scikit-learn线性分类器和回归器的权重和预测,可以将决策树打印为文本或SVG,显示特征的重要性,并解释决策树和基于树集成的预测。ELI5还可以理解scikit-learn中的文本处理程序,并相应地突出显示文本数据。

  • Keras -通过Grad-CAM可视化解释图像分类器的预测。

  • XGBoost -显示特征的重要性,解释XGBClassifier, XGBRegressor和XGBoost . booster的预测。

  • LightGBM -显示特征的重要性,解释LGBMClassifier和LGBMRegressor的预测。

  • CatBoost:显示CatBoostClassifier和CatBoostRegressor的特征重要性。

  • lightning -解释lightning 分类器和回归器的权重和预测。

  • sklearn-crfsuite。ELI5允许检查sklearn_crfsuite.CRF模型的权重。

基本用法:

Show_weights() 显示模型的所有权重,Show_prediction() 可用于检查模型的个体预测

在这里插入图片描述

ELI5还实现了一些检查黑盒模型的算法:

TextExplainer使用LIME算法解释任何文本分类器的预测。排列重要性法可用于计算黑盒估计器的特征重要性。

在这里插入图片描述

4、Shapash

Shapash提供了几种类型的可视化,可以更容易地理解模型。通过摘要来理解模型提出的决策。该项目由MAIF数据科学家开发。Shapash主要通过一组出色的可视化来解释模型。

Shapash通过web应用程序机制工作,与Jupyter/ipython可以完美的结合。

from shapash import SmartExplainer
 
 xpl = SmartExplainer(
     model=regressor,
     preprocessing=encoder, # Optional: compile step can use inverse_transform method
     features_dict=house_dict  # Optional parameter, dict specifies label for features name
 )
 
 xpl.compile(x=Xtest,
  y_pred=y_pred,
  y_target=ytest, # Optional: allows to display True Values vs Predicted Values
  )
 
 xpl.plot.contribution_plot("OverallQual")

图片

5、Anchors

Anchors使用称为锚点的高精度规则解释复杂模型的行为,代表局部的“充分”预测条件。该算法可以有效地计算任何具有高概率保证的黑盒模型的解释。

Anchors可以被看作为LIME v2,其中LIME的一些限制(例如不能为数据的不可见实例拟合模型)已经得到纠正。Anchors使用局部区域,而不是每个单独的观察点。它在计算上比SHAP轻量,因此可以用于高维或大数据集。但是有些限制是标签只能是整数。

在这里插入图片描述

6、BreakDown

BreakDown是一种可以用来解释线性模型预测的工具。它的工作原理是将模型的输出分解为每个输入特征的贡献。这个包中有两个主要方法。Explainer()和Explanation()

model = tree.DecisionTreeRegressor()
 model = model.fit(train_data,y=train_labels)
 
 #necessary imports
 from pyBreakDown.explainer import Explainer
 from pyBreakDown.explanation import Explanation
 
 #make explainer object
 exp = Explainer(clf=model, data=train_data, colnames=feature_names)
 
 #What do you want to be explained from the data (select an observation)
 explanation = exp.explain(observation=data[302,:],direction="up")

在这里插入图片描述

7、Interpret-Text

Interpret-Text 结合了社区为 NLP 模型开发的可解释性技术和用于查看结果的可视化面板。可以在多个最先进的解释器上运行实验,并对它们进行比较分析。这个工具包可以在每个标签上全局或在每个文档本地解释机器学习模型。

以下是此包中可用的解释器列表:

  • Classical Text Explainer——(默认:逻辑回归的词袋)

  • Unified Information Explainer

  • Introspective Rationale Explainer

在这里插入图片描述

它的好处是支持CUDA,RNN和BERT等模型。并且可以为文档中特性的重要性生成一个面板。

from interpret_text.widget import ExplanationDashboard
 from interpret_text.explanation.explanation import _create_local_explanation
 
 # create local explanation
 local_explanantion = _create_local_explanation(
 classification=True,
 text_explanation=True,
 local_importance_values=feature_importance_values,
 method=name_of_model,
 model_task="classification",
 features=parsed_sentence_list,
 classes=list_of_classes,
 )
 # Dash it
 ExplanationDashboard(local_explanantion)

图片

8、aix360 (AI Explainability 360)

AI Explainbability 360工具包是一个开源库,这个包是由IBM开发的,在他们的平台上广泛使用。AI Explainability 360包含一套全面的算法,涵盖了不同维度的解释以及代理解释性指标。

在这里插入图片描述

工具包结合了以下论文中的算法和指标:

  • Towards Robust Interpretability with Self-Explaining Neural Networks, 2018. ref

  • Boolean Decision Rules via Column Generation, 2018. ref

  • Explanations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives, 2018. ref

  • Improving Simple Models with Confidence Profiles, , 2018. ref

  • Efficient Data Representation by Selecting Prototypes with Importance Weights, 2019. ref

  • TED: Teaching AI to Explain Its Decisions, 2019. ref

  • Variational Inference of Disentangled Latent Concepts from Unlabeled Data, 2018. ref

  • Generating Contrastive Explanations with Monotonic Attribute Functions, 2019. ref

  • Generalized Linear Rule Models, 2019. ref

9、OmniXAI

OmniXAI (Omni explable AI的缩写),解决了在实践中解释机器学习模型产生的判断的几个问题。

它是一个用于可解释AI (XAI)的Python机器学习库,提供全方位的可解释AI和可解释机器学习功能,并能够解决实践中解释机器学习模型所做决策的许多痛点。OmniXAI旨在成为一站式综合库,为数据科学家、ML研究人员和从业者提供可解释的AI。

from omnixai.visualization.dashboard import Dashboard
 # Launch a dashboard for visualization
 dashboard = Dashboard(
    instances=test_instances,                        # The instances to explain
    local_explanations=local_explanations,           # Set the local explanations
    global_explanations=global_explanations,         # Set the global explanations
    prediction_explanations=prediction_explanations, # Set the prediction metrics
    class_names=class_names,                         # Set class names
    explainer=explainer                              # The created TabularExplainer for what if analysis
 )
 dashboard.show()    

图片

10、XAI (eXplainable AI)

XAI 库由 The Institute for Ethical AI & ML 维护,它是根据 Responsible Machine Learning 的 8 条原则开发的。它仍处于 alpha 阶段因此请不要将其用于生产工作流程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1298426.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鸿蒙生态开发就业前景到底好不好

鸿蒙生态开发是指基于华为自主研发的操作系统鸿蒙(HarmonyOS)进行应用程序开发和生态建设。目前,鸿蒙生态开发的前景非常好,原因如下:做鸿蒙应用开发到底学习些啥? (qq.com) 1:政府支持&#x…

高德地图vue实现自定义标点热力图效果(缩放时展示不同数据)

高德地图插件引入省略。。。样式和vue基础组件省略。。。 如果每个标点没有数值,则可以用点聚合来实现功能下面例子,每个标点会有按市统计的数值,而且缩放一定程度时,需要展示按省统计的标点,因此需要自定义标点样式和…

Ubuntu中编译出Windows的可执行程序(.exe)

1、前言 在嵌入式开发中,交叉编译是很常见的情况,如果你把Windows电脑也看做一块高性能的开发板,那在Ubuntu中编译出Windows上运行的可执行程序也是很好理解的行为。 2、安装mingw64环境 sudo apt-get install mingw-w64 3、测试编译链是否安…

特权FPGA 学习笔记

存储器可用于异步时钟域的信号处理,双口RAM多用于交互式数据,FIFO多用于单向数据传输;以task的方式封装testbench子程序,以提高复用程度;模板中,vho是vhdl模板,veo是verilog模板;run…

第七届中老越三国丢包狂欢节暨2023年中老越三国(普洱)边境商品交易会新闻发布会在昆明召开

12月8日,第七届中老越三国丢包狂欢节暨2023年中老越三国(普洱)边境商品交易会新闻发布会在昆明召开。据悉,本届丢包节暨边交会将于2023年12月22日至26日在普洱市江城哈尼族彝族自治县举办。 发布会现场 中老越三国丢包狂欢节自200…

解决 php 连接mysql数据库时报错:Fatal error: Class ‘mysqli’ not found in问题

在使用php对mysql进行连接的过程中,出现了Fatal error: Uncaught Error: Class "mysqli" not found in的问题 解决方案 这个错误通常表示您的PHP代码中缺少MySQL扩展或者没有启用MySQL扩展。 我们首先确认一下PHP环境中已经安装了MySQL扩展。检查一下自己…

v4l2接收流程

内核media驱动目录结构 目录media/driver,子目录说明如下,主要列举本文中使用到的目录 目录功能I2C摄像头,解串器(max9296/9295等)platform控制器的驱动,例如mipi控制等v4l2_coreioctl 入口等media\common\videobuf2…

哈希表的几种实现方式与比较

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 哈希表概述 哈希表(Hash Table)是一种常用的数据结构,用于实现键值对的映射关系。它通过哈希函数将键映射到一个特定的索引位置&#xf…

Spring Boot 3 整合 Mybatis-Plus 实现动态数据源切换实战

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

银河麒麟本地软件源配置方法

软件源介绍 软件源可以理解为软件仓库,当需要安装软件时则会根据源配置去相应的软件源下载软件包,此方法的优点是可以自动解决软件包的依赖关系。常见的软件源有光盘源、硬盘源、FTP源、HTTP源,本文档主要介绍本地软件源的配置方法&#xff…

专注抖音短视频账号矩阵系统源头开发---saas工具

抖音账号|短视频矩阵分发系统 | 多账号管理发布 |MVC架 短视频矩阵分发系统是一种可以帮助企业、机构和个人高效分发短视频的工具。随着社交媒体的不断普及,短视频的使用越来越广泛,因此如何快速而准确地将短视频传播到不同的平台和账号上已经成为了一个…

短剧分销平台搭建:短剧变现新模式

短剧作为今年大热的行业,深受大众追捧!短剧剧情紧凑,几乎每一集都有高潮剧情,精准击中了当下网友的碎片化时间。 短剧的形式较为灵活,可以轻松融入各种的元素,比如喜剧、悬疑、爱情等,可以满足…

一加 12 Pop-up快闪活动来袭,十城联动火爆开启

12 月 9 日,一加 12 Pop-up 快闪活动在北京、深圳、上海、广州等十城联动开启,各地加油欢聚快闪现场,抢先体验与购买一加 12。作为一加十年超越之作,一加 12 全球首发拥有医疗级护眼方案和行业第一 4500nit 峰值亮度的 2K 东方屏、…

postman常用脚本

一、在参数中动态添加开始时间和结束时间的时间戳 1.先在collection中添加参数,这里的作用域是collection,也可以是其他的任何scope 2.在Pre-request Script 中设定开始时间和结束时间参数,比如昨天和今天的时间戳,下面是js代码 …

彻底搞懂零拷贝技术( DMA、PageCache)

DMA 直接内存访问(Direct Memory Access) 什么是DMA? 在进行数据传输的时候,数据搬运的工作全部交给 DMA 控制器,而 CPU 不再参与,可以去干别的事情。 传统I/O 在没有 DMA 技术前,全程数据…

【图论笔记】克鲁斯卡尔算法(Kruskal)求最小生成树

【图论笔记】克鲁斯卡尔算法(Kruskal)求最小生成树 适用于 克鲁斯卡尔适合用来求边比较稀疏的图的最小生成树 简记: 将边按照升序排序,选取n-1条边,连通n个顶点。 添加一条边的时候,如何判断能不能添加…

链表OJ—相交链表

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 1、相交链表的题目: 方法讲解: 图文解析: 代码实现: 总结 前言 世上有两种耀眼的光芒,一种是正在升…

《PySpark大数据分析实战》图书上线啦

《PySpark大数据分析实战》图书上线啦 《PySpark大数据分析实战》图书上线啦特殊的日子关于创作关于数据关于Spark关于PySpark关于图书/专栏 《PySpark大数据分析实战》图书上线啦 特殊的日子 不知不觉一转眼入驻CSDN已经满一年了,这真是一个充满意义的特殊的日子&…

SystemUI下拉通知菜单栏定时自动隐藏

前言 在系统应用开发过程中,常常遇到一些特殊的需求,Android原生的应用并无此适配,此时需要对系统应用进行定制化开发。 目前遇到的这样一个需求:下拉通知菜单栏时,定时8秒后自动关闭通知菜单栏。通知菜单栏为Sytstem…

如何用Python编写俄罗斯方块Tetris游戏?

在本文中,我们将用Python代码构建一个令人惊叹的项目:俄罗斯方块游戏。在这个项目中,我们将使用pygame库来构建游戏。要创建此项目,请确保您的系统中安装了最新版本的Python。让我们开始吧! Pygame是一组跨平台的Pyth…