2020年第九届数学建模国际赛小美赛B题血氧饱和度的变异性解题全过程文档及程序

news2024/11/23 18:34:33

2020年第九届数学建模国际赛小美赛

B题 血氧饱和度的变异性

原题再现:

  脉搏血氧饱和度是监测患者血氧饱和度的常规方法。在连续监测期间,我们希望能够使用模型描述血氧饱和度的模式。
  我们有36名受试者的数据,每个受试者以1 Hz的频率连续测试血氧饱和度约1小时。我们还记录了参与者的以下信息,包括年龄、BMI、性别、吸烟史和/或当前吸烟状况,以及可能影响阅读的任何重要疾病。
  我们想用这些数据来发现血氧饱和度变化的典型模式,这样我们就可以用几个参数来描述一个人。我们还想知道血氧饱和度序列的模式是否与年龄有关,即老年人与年轻人相比哪些特征发生了变化。理想情况下,这些特征应具有生物学或医学意义。

整体求解过程概述(摘要)

  脉搏血氧饱和度是监测患者血氧饱和度的常规方法。脉搏血氧饱和度的使用有助于减少有创动脉血气分析和低氧血症检测的需要。一个可靠有效的血氧饱和度数学模型对进一步研究具有重要意义。
  首先计算36名受试者血氧饱和度的均值和标准差,然后进行初步的线性分析。结果表明,氧饱和度波动较大,并伴有过饱和度。一般来说,脉搏血氧饱和度显示出很小的变异性。根据poincare曲线分析,血氧饱和度的变化主要由长期变化组成。此外,我们还分析了平均SpO2与群体变异性之间的Pearson相关系数,发现SpO2水平与群体变异性呈负相关。DFA分析结果表明,时间序列是典型的分形时间序列,具有明显的长程相关性和长程幂律。
  在此基础上,探讨了血样多样性各参数的具体模式,并提出利用ARMA时间序列模型对血氧饱和度的多样性进行建模和分析。我们对样本进行了单位根检测,确定样本为平稳序列。然后对样本的自相关函数(ACF)或偏自相关函数(PACF)进行统计分析,确定模型的阶数。最后通过机器学习得到ARMA模型的具体参数。通过残差分析和D-W检验验证了模型的正确性。通过模型分析可知,健康成人血氧饱和度浓度具有三阶自相关和三阶偏相关的特征。
  通过样本熵分析、趋势波动分析和多尺度熵分析,探讨了血氧饱和度序列模式与年龄的关系,得出以下结论:(1)年龄对平均血氧浓度无显著影响。(2) 青年人和老年人的血氧饱和度变化是慢性的。(3) 从不同的尺度来看,老年人的样本熵小于青年人,且在较高的尺度下差异更为明显。从长远来看,老化对OSV复杂性的降低有重要影响。
  综上所述,该模型在血氧饱和度分析中准确、真实,发现了年龄和血氧饱和度序列的具体特征,具有生物学或医学意义。

模型假设:

  为了简化问题并消除复杂性,我们做出以下假设。

  (1) 问题中给出的数据是真实可靠的。该指令设置了一个限制,即提供的数据文件只包含我们应该用于此问题的数据,并且只有当这些数据真实可靠时,我们的分析才有效。

  (2) 没有其他影响因素。问题中提供的数据涵盖了可能影响研究人群OSV的所有重要医疗条件。

问题重述:

  问题背景
  脉搏血氧饱和度(pulseoximetry)是一种无创性测量血氧饱和度(SpO2)的技术。无论是在重症监护室、外科手术室,还是在一些门诊,它都被证明是一种广泛应用的临床方法。在这些环境中使用脉搏血氧饱和度有助于减少有创动脉血气分析和检测低氧血症的需要。
  利用血氧饱和度的变异性分析来进一步测量血氧合的调节已引起越来越多的认识。生理变异性分析的好处在于它可以为我们提供有关生理控制系统完整性的有用信息。氧饱和度变异性(OSV)分析可用于控制组织氧合监测的心肺系统的完整性[13]。此外,它还用于睡眠呼吸紊乱的诊断,其中SpO2特征充分描述了SpO2调节,以识别睡眠呼吸紊乱的风险。在早产儿中,血氧饱和度变异性表现出明显的特征,OSV稳定增加,而平均SpO2值变化不大[8]。此外,研究人员试图寻找OSV的诊断价值。例如,最近在孟加拉国一家三级医院开展的一项研究调查了实施OSV作为预测工具是否可以提高危重症儿童的入院率。
  因此,一个稳定有效的血氧饱和度数学模型将为进一步的研究做出重要贡献。

  问题重述
  •建立氧气典型变化模式的数学模型,以确定人类健康特征与OSV之间的关系。
  •了解血氧饱和度序列的模式是否与年龄相关,以及与年轻人相比,老年人的哪些特征表现出明显的变化。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

li_ave=np.mean(li_np,axis=0) #Average of 36 people in 0-3500 seconds
li_ave_per=np.mean(li_np,axis=1) #Average blood oxygen per person
li_std_per=np.std(li_np,axis=1) #Blood oxygen variance per person
li_simp=li_np[0,:] #Data sample of the first person
#np.set_printoptions(threshold=np.inf)
print("li_std_per = ",li_std_per)
#Drawing
fig1 = plt.figure()
#Draw blood oxygen time series
plt.plot(range(len(li_simp)),li_simp)
plt.xlabel("Data points")
plt.ylim(90,105)
plt.ylabel("Oxygen saturation(\%)")
plt.title(’Oxygen Saturation Variability Over 1 Hour’)
#The relationship between mean blood oxygen and standard deviation
fig2 = plt.figure()
li_ave_std=np.std(li_ave_per)
li_ave_ave=np.mean(li_ave_per)
print("li_ave_ave = ",li_ave_ave)
print("li_ave_std = ",li_ave_std)
li_std_ave=np.mean(li_std_per)
li_std_std=np.std(li_std_per)
print("li_std_ave = ",li_std_ave)
print("li_std_std = ",li_std_std)
plt.scatter(li_ave_per,li_std_per)
plt.xlim(90,105)
plt.ylim(0,1.5)
plt.xlabel(’Mean SpO2 (\%))
plt.ylabel(’Standard Deviation of SpO2 (\%))
plt.title("Relationship between Mean Oxygen Saturation Level and Total Variability")
#Linear regression
model = LinearRegression()
model = model.fit(li_ave_per.reshape(-1,1), li_std_per)
plt.plot([93,100],[i*model.coef_+model.intercept_ for i in [93,100]])
#Correlation coefficient between mean blood oxygen and standard deviation
li_ave_std_r=np.mean(np.multiply((li_ave_per-np.mean(li_ave_per)),(li_std_per-np.mean(li_std_per))))/(np.std(li_std_per)*np.std(li_ave_per))
plt.text(92, 0.6, "r=\%.3f" \% li_ave_std_r)
fig3 = plt.figure()
for i in range(len(li_simp)-1):
plt.plot(li_simp[i], li_simp[i+1], color=’b’, marker=’o’)
plt.xlabel(’SpO2(n)(\%))
plt.ylabel(’SpO2(n+1)(\%))
plt.xlim(90,105)
plt.ylim(90,105)
plt.title("Poincare Plot for SpO2 data")
#SD calculation
all_SD1=[]
all_SD2=[]
for j in range(36):
SD1 = []
SD2 = []
li_temp=li_np[j,:]
for i in range(len(li_temp)-1):
SD1.append(li_temp[i+1]-li_temp[i])
SD2.append(li_temp[i+1]+li_temp[i])
ST1 = np.std(SD1)/np.sqrt(2)
ST2 = np.std(SD2)/np.sqrt(2)
all_SD1.append(ST1)
all_SD2.append(ST2)
SD1_ave=np.mean(all_SD1)
SD2_ave=np.mean(all_SD2)
SD1_std=np.std(all_SD1)
SD2_std=np.std(all_SD2)
print("SD1_ave = \%.2f"\%SD1_ave)
print("SD2_ave = \%.2f"\%SD2_ave)
print("SD1_std = \%.2f"\%SD1_std)
print("SD2_std = \%.2f"\%SD2_std)
plt.text(100,94,"SD1:\%.2f " \% all_SD1[0] + "\%")
plt.text(100,93,"SD2:\%.2f " \% all_SD2[0] + "\%")
function SampEnVal = SampEn(data, m, r)
data = data(:);
N = length(data);
Nkx1 = 0;
Nkx2 = 0;
for k = N - m:-1:1
x1(k, :) = data(k:k + m - 1);
x2(k, :) = data(k:k + m);
end
for k = N - m:-1:1
x1temprow = x1(k, :);
x1temp = ones(N - m, 1)*x1temprow;
dx1(k, :) = max(abs(x1temp - x1), [], 2);
Nkx1 = Nkx1 + (sum(dx1(k, :) < r) - 1)/(N - m - 1);
x2temprow = x2(k, :);
x2temp = ones(N - m, 1)*x2temprow;
dx2(k, :) = max(abs(x2temp - x2), [], 2);
Nkx2 = Nkx2 + (sum(dx2(k, :) < r) - 1)/(N - m - 1);
end
Bmx1 = Nkx1/(N - m);
Bmx2 = Nkx2/(N - m);
SampEnVal = -log(Bmx2/Bmx1);
function [mse,sf] = MSE_Costa2005(x,nSf,m,r)
% pre-allocate mse vector
mse = zeros([1 nSf]);
% coarse-grain and calculate sample entropy for each scale factor
for ii = 1 : nSf
% get filter weights
f = ones([1 ii]);
f = f/sum(f);
% get coarse-grained time series (i.e., average data within non-overlapping time
windows)
y = filter(f,1,x);
y = y(length(f):end);
y = y(1:length(f):end);
% calculate sample entropy
mse(ii) = SampleEntropy(y,m,r,0);
end
% get sacle factors
sf = 1 : nSf;
function F_n=DFA(DATA,win_length,order)
N=length(DATA);
n=floor(N/win_length);
N1=n*win_length;
y=zeros(N1,1);
Yn=zeros(N1,1);
fitcoef=zeros(n,order+1);
mean1=mean(DATA(1:N1));
for i=1:N1
y(i)=sum(DATA(1:i)-mean1);
end
y=y’;
for j=1:n
fitcoef(j,:)=polyfit(1:win_length,y(((j-1)*win_length+1):j*win_length),order);
end
for j=1:n
Yn(((j-1)*win_length+1):j*win_length)=polyval(fitcoef(j,:),1:win_length);
end
sum1=sum((y’-Yn).^2)/N1;
sum1=sqrt(sum1);
F_n=sum1;
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1297438.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

对python自动生成接口测试的示例讲解

在python中Template可以将字符串的格式固定下来&#xff0c;重复利用。 同一套测试框架为了可以复用&#xff0c;所以我们可以将用例部分做参数化&#xff0c;然后运用到各个项目中。 代码如下&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2…

GPT-4 变懒了?官方回复

你是否注意到&#xff0c;最近使用 ChatGPT 的时候&#xff0c;当你向它提出一些问题&#xff0c;却得到的回应似乎变得简短而敷衍了&#xff1f;对于这一现象&#xff0c;ChatGPT 官方给出了回应。 译文&#xff1a;我们听到了你们所有关于 GPT4 变得更懒的反馈&#xff01;我…

记录 | vscode设置自动换行

右上菜单栏 -> 查看 -> 打开自动换行 或者还有种方式&#xff0c;如下&#xff0c; 左下角小齿轮&#xff0c;点击设置 然后输入 Editor: Word Wrap &#xff0c;把开关打开为 on

web前端开发html/css练习

目标图&#xff1a; 素材&#xff1a; 代码&#xff1a; <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns"http://www.w3.org/1999/xhtml"…

【ET8】2.ET8入门-ET框架解析

菜单栏相关&#xff1a;ENABLE_DLL选项 ET->ChangeDefine->ADD_ENABLE_DLL/REMOVE_ENABLE_DLL 一般在开发阶段使用Editor时需要关闭ENABLE_DLL选项。该选项关闭时&#xff0c;修改脚本之后&#xff0c;会直接重新编译所有的代码&#xff0c;Editor在运行时会直接使用最…

【Vue3+Ts项目】硅谷甄选 — 路由配置+登录模块+layout组件+路由鉴权

一、路由配置 项目一共需要4个一级路由&#xff1a;登录&#xff08;login&#xff09;、主页&#xff08;home&#xff09;、404、任意路由&#xff08;重定向到404&#xff09;。 1.1 安装路由插件 pnpm install vue-router 1.2 创建路由组件 在src目录下新建views文件…

STM32F1之CAN介绍

目录 ​编辑 1. CAN 是什么&#xff1f; 2. 总线拓扑图 3. CAN 的特点 4. CAN 协议的基本概念 1. CAN 是什么&#xff1f; CAN 是 Controller Area Network 的缩写&#xff08;以下称为 CAN&#xff09;&#xff0c;是 ISO*1 国际标准化的串行通信协议。 在当前的汽车产…

FPGA时序分析与约束(0)——目录与传送门

一、简介 关于时序分析和约束的学习似乎是学习FPGA的一道分水岭&#xff0c;似乎只有理解了时序约束才能算是真正入门了FPGA&#xff0c;对于FPGA从业者或者未来想要从事FPGA开发的工程师来说&#xff0c;时序约束可以说是一道躲不过去的坎&#xff0c;所以这个系列我们会详细介…

vertica主键列能插入重复值的处理办法

问题描述 开发同事反馈在vertica中创建含主键列的表中插入重复数据时没有进行校验&#xff0c;插入重复值成功。经过测试着实可以插入重复值&#xff0c;这个坑有些不一样。 创建表和插入语句如下&#xff1a; --创建表 CREATE TABLE dhhtest(ID VARCHAR(64) PRIMARY KEY );…

2024年度AI投资策略报告:AI三要素共振,AIGC云到端加速推进

今天分享的AI系列深度研究报告&#xff1a;《2024年度AI投资策略报告&#xff1a;AI三要素共振&#xff0c;AIGC云到端加速推进》。 &#xff08;报告出品方&#xff1a;中国银河证券研究院&#xff09; 报告共计&#xff1a;103页 核心观点:行业热度将持续&#xff0c;积极把…

Git版本控制---入门学习

1.简介 是一个免费的开源分布式版本控制系统工具&#xff0c;旨在快速高效地处理从小型到大型的所有项目。 它是由 Linus Torvalds 在2005年创建的&#xff0c;用于开发 Linux 内核。 Git具有大多数团队和开发人员所需的功能、性能、安全性和灵活性。 它还用作重要的分布式版本…

深度学习——第3章 Python程序设计语言(3.8 深度学习框架PyTorch)

3.8 深度学习框架PyTorch 目录 1. PyTorch简介 2. PyTorch的安装 3. PyTorch相关资源 4. 张量 5. 自动求导 6. 并行计算简介 7. AI硬件加速设备 PyTorch简介 PyTorch是由Meta AI(Facebook)人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库&…

Gemini 能够拯救的谷歌吗?

没有人会记住第二个登上月球的人&#xff0c;除了他自己。 谷歌现在处于尴尬的地位&#xff0c;在 2022 年之前&#xff0c;他以 Chrome Google 搜索确立搜索领域绝对霸主之位&#xff0c;全球市场份额高达 90% 之多&#xff0c;FireFox、Opera 等等浏览器都难以匹敌。而随着 …

枚举 LeetCode2048. 下一个更大的数值平衡数

如果整数 x 满足&#xff1a;对于每个数位 d &#xff0c;这个数位 恰好 在 x 中出现 d 次。那么整数 x 就是一个 数值平衡数 。 给你一个整数 n &#xff0c;请你返回 严格大于 n 的 最小数值平衡数 。 如果n的位数是k&#xff0c;n它的下一个大的平衡数一定不会超过 k1个k1…

JS中的模糊查询功能

什么是模糊查询 模糊查询是指可以在不明确指定查询条件的情况下&#xff0c;自动查找与指定字符串相似的内容。例如&#xff0c;我们在搜索引擎中输入关键字时&#xff0c;就会出现相关的搜索结果&#xff0c;这就是利用了模糊查询功能。 在JS中&#xff0c;我们可以利用一些…

Python:核心知识点整理大全9-笔记

目录 ​编辑 5.2.4 比较数字 5.2.5 检查多个条件 1. 使用and检查多个条件 2. 使用or检查多个条件 5.2.6 检查特定值是否包含在列表中 5.2.7 检查特定值是否不包含在列表中 banned_users.py 5.2.8 布尔表达式 5.3 if 语句 5.3.1 简单的 if 语句 5.3.2 if-else 语句 …

中间件系列 - Redis入门到实战(基础篇)

前言 1.学习视频&#xff1a; 黑马程序员Redis入门到实战教程&#xff0c;深度透析redis底层原理redis分布式锁企业解决方案黑马点评实战项目 2. 本内容仅用于个人学习笔记&#xff0c;如有侵扰&#xff0c;联系删除 3. 本章学习目标&#xff1a; 初始Redis 认识NoSQL认识Redi…

SpringCloud Gateway

目录 一、gateway简介二、gateway快速入门2.1 引入依赖2.2 编写启动类2.3 编写基础配置和路由规则 三、断言工厂四、过滤器工厂4.1 路由过滤器的种类4.2 请求头过滤器4.3 默认过滤器 五、全局过滤器5.1 全局过滤器作用5.2 自定义全局过滤器5.3 过滤器执行顺序 六、跨域问题6.1 …

超越极限!如何进行高效分布式性能测试,让Jmeter揭示并发下系统的真正实力

一、为什么要进行分布式性能测试 当进行高并发性能测试的时候&#xff0c;受限于Jmeter工具本身和电脑硬件的原因&#xff0c;无法满足我们对大并发性能测试的要求。 基于这种场景下&#xff0c;我们就需要采用分布式的方式来实现我们高并发的性能测试要求。 二、分布式性能测…

短视频ai剪辑分发矩阵系统源码3年技术团队开发搭建打磨

如果您需要搭建这样的系统&#xff0c;建议您寻求专业的技术支持&#xff0c;以确保系统的稳定性和安全性。 在搭建短视频AI剪辑分发矩阵系统时&#xff0c;您需要考虑以下几个方面&#xff1a; 1. 技术实现&#xff1a;您需要选择适合您的需求和预算的技术栈&#xff0c;例如使…