智能优化算法应用:基于鱼鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/26 10:30:58

智能优化算法应用:基于鱼鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于鱼鹰算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.鱼鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用鱼鹰算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.鱼鹰算法

鱼鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/130542706
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

鱼鹰算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明鱼鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1296493.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【c语言指针详解】指针的基本概念和用法

目录 一、指针的基本概念和用法 二、指针运算 2.1 指针的自增和自减运算 2.2 指针的自增和自减运算 三、数组和指针 四、指针和函数 4.1 在函数中使用指针作为参数和返回值 4.1.1 使用指针作为函数参数 4.1.2 使用指针作为函数返回值 4.2 指针参数的传值和传引用特性 4.2.1 指针…

Windows 系统,TortoiseSVN 无法修改 Log 信息解决方法

使用SVN提交版本信息时,注释内容写的不全。通过右键TortoiseSVN的Show log看到提交的的注释,右键看到Edit log message的选项,然而提交后却给出错误提示: Repository has not been enabled to accept revision propchanges; ask …

【模型量化】神经网络量化基础及代码学习总结

1 量化的介绍 量化是减少神经网络计算时间和能耗的最有效的方法之一。在神经网络量化中,权重和激活张量存储在比训练时通常使用的16-bit或32-bit更低的比特精度。当从32-bit降低到8-bit,存储张量的内存开销减少了4倍,矩阵乘法的计算成本则二…

Mint Blockchain,一个聚焦在 NFT 领域的 L2 网络

Mint 是什么? Mint 是一个聚焦在 NFT 领域的创新型 L2 网络。Mint Blockchain 致力于促进 NFT 资产协议标准的创新和现实商业场景中 NFT 资产的大规模采用。 不管是过去 3 年在以太坊网络涌现的 NFT,还是当下在比特币网络活跃的“铭文” NFT&#xff0c…

HarmonyOS开发(九):数据管理

1、概述 1.1、功能简介 数据管理为开发者提供数据存储、数据管理能力。 它分为两个部分: 数据存储:提供通用数据持久化能力,根据数据特点,分为用户首选项、键值型数据库和关系型数据库。数据管理:提供高效的数据管…

gitlab注册无中国区电话验证问题

众所周知gitlab对中国区不友好,无法直接注册,页面无法选择86的手机号进行验证码发送。 Google上众多的方案是修改dom,而且时间大约是21年以前。 修改dom,对于现在的VUE、React框架来说是没有用的,所以不用尝试。 直接看…

springboot3远程调用

RPC 两个服务器之间的调用 远程请求 内部服务之间的调用 可以通过 cloud 注册中心 openfeign等 外部服务的调用 http请求 外部协议 api:远程接口 sdk:本地调用 调用阿里云的天气请求

Navicat 技术指引 | 适用于 GaussDB 分布式的日志查询与配置设置

Navicat Premium(16.3.3 Windows 版或以上)正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能,还提供强大的高阶功能(如模型、结…

Python---random库

目录 基本随机数函数(): rand.seed() random() 扩展随机数函数(): random库包含两类函数:基本随机数函数,扩展随机数函数 基本随机数函数:seed(),random() 扩展随机数函数:randint,getrandbits(),uniform(),randrange(),choice(),shuff…

分布式和微服务区别

1.分布式 微服务和分布式的区别 1.将一个大的系统划分为多个业务模块,业务模块分别部署到不同的机器上,各个业务模块之间通过接口进行数据交互。区别分布式的方式是根据不同机器不同业务。 2.分布式是否属于微服务? 答案是肯定的。微服务的意…

微信小程序引入Vant Weapp修改样式不起作用,使用外部样式类进行覆盖

一、引入Vant Weapp后样式问题 在项目中使用第三方组件修改css样式时,总是出现各种各样问题,修改的css样式不起作用,没有效果,效果不符合预期等。 栗子(引入一个搜索框组件)实现效果: 左侧有一个搜索文字背景为蓝色,接着跟一个搜索框 wxml <view class"container&q…

cache 2.单机并发缓存

0.对原教程的一些见解 个人认为原教程中两点知识的引入不够友好。 首先是只读数据结构 ByteView 的引入使用是有点迷茫的&#xff0c;可能不能很好理解为什么需要ByteView。 第二是主体结构 Group的引入也疑惑。其实要是熟悉groupcache&#xff0c;那对结构Group的使用是清晰…

修改pip源

修改pip源 永久修改 PS C:\Users\Dell> pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/Writing to C:\Users\Dell\AppData\Roaming\pip\pip.ini临时修改 pip install -i(即--index-url简写) http://mirrors.aliyun.com/pypi/simple/ selenium…

图像叠加中文字体

目录 1) 前言2) freetype下载3) Demo3.1) 下载3.2) 编译3.3) 运行3.4) 结果3.5) 更详细的使用见目录中说明 4) 积少成多 1) 前言 最近在做图片、视频叠加文字&#xff0c;要求支持中文&#xff0c;基本原理是将图片或视频解码后叠加文字&#xff0c;之后做图片或视频编码即可。…

一文讲解关于MCU启动原理的几个关键问题

MCU最开始一启动后去哪里读代码&#xff1f; CPU上电启动后被设计为去地址0x00000000位置处读取代码&#xff1b;首先会连续读取两个字&#xff0c;分别是栈指针初始值和复位异常处理函数的地址&#xff1b;然后跳去执行复位异常处理函数。 当然在一些早期的ARM处理器设计中&a…

【计算机网络学习之路】HTTP请求

目录 前言 HTTP请求报文格式 一. 请求行 HTTP请求方法 GET和POST的区别 URL 二. 请求头 常见的Header 常见的额请求体数据类型 三. 请求体 结束语 前言 HTTP是应用层的一个协议。实际我们访问一个网页&#xff0c;都会像该网页的服务器发送HTTP请求&#xff0c;服务…

nodejs+vue+微信小程序+python+PHP的黄山旅游景点购票系统设计与实现-计算机毕业设计推荐

本文首先对该系统进行了详细地描述&#xff0c;然后对该系统进行了详细的描述。管理人员增加了系统首页、个人中心、用户管理、景点分类管理、景点简介管理、旅游路线管理、文章分类管理、公告文章管理、系统管理理等功能。黄山旅游景点购票系统是根据当前的现实需要&#xff0…

ELK(五)—集群搭建

写目录 ip规划ElasticSearch集群集群节点搭建集群es切片和副本切片&#xff08;Shard&#xff09;&#xff1a;副本&#xff08;Replica&#xff09;&#xff1a; 故障转移postman创建索引的情况直接在面板中创建索引总结 ip规划 ip名称服务192.168.150.190elk_masterelastics…

web漏洞原理与防御策略,web漏洞怎么挖掘

目录 Web安全的重要性 ​编辑常见的Web漏洞类型及其原理&#xff1a; 1、跨站脚本攻击&#xff08;XSS&#xff09;: 2、SQL注入: 3、跨站请求伪造&#xff08;CSRF&#xff09;: 4、远程文件包含&#xff08;RFI&#xff09;和本地文件包含&#xff08;LFI&#xff09;:…

深入浅出:HTTPS单向与双向认证及证书解析20231208

介绍: 网络安全的核心之一是了解和实施HTTPS认证。本文将探讨HTTPS单向认证和双向认证的区别&#xff0c;以及SSL证书和CA证书在这些过程中的作用&#xff0c;并通过Nginx配置实例具体说明。 第一部分&#xff1a;HTTPS单向认证 定义及工作原理&#xff1a;HTTPS单向认证是一…