我根据原来的分布式的设计,实现了分布式仿真的方法,但是对各种数据的存储一直不太熟练,所有的设计都记录在
分布式仿真思考(三)成功运行啦,哈哈哈-CSDN博客
在这里,我将每个进程都存储这全局的邻接表,本地邻接表,如下
// 神经元的邻接表
std::vector<std::vector<int>> global_adjacency;
// 全局每个神经元的出度
std::vector<int> global_out_degree;
// 本地的邻接表
std::vector<std::vector<int>> local_adjcency;
//本地的突触集合
std::vector<int> local_node_gids;
在实例化神经元和突触时:
//实例化本地神经元,加入到local_nodes集合
for (int i = 0; i < local_node_gids.size(); i++)
{
Neuron* node = new Neuron(realDist(gen), local_node_gids[i]);
local_nodes.push_back(node);
}
//实例化本地突触,并加入local_synapases
for (int ii = 0; ii < local_adjcency.size(); ii++)
{
if (local_adjcency.size()==0)
{
continue;
}
for (int jj = 0; jj < local_adjcency[ii].size(); jj++)
{
// 获取突触后神经元的位置
auto it = std::find(local_node_gids.begin(), local_node_gids.end(), local_adjcency[ii][jj]);
// 转成本地神经元的下标
int idx = std::distance(local_node_gids.begin(),it);
Synapse* synapase = new Synapse(min_delay, 0.2, local_nodes[idx]);
local_synapases[ii].push_back(synapase);
}
}
看一看出来在创建的过程中消耗了大部分的内存,所我决定重新设计一下,以减少内存的使用,其实问题最大的难点依旧在,脉冲的传输阶段,需要准确判断脉冲需要发送的位置,我之前的做法是这样
/// <summary>
/// 判断本地脉冲和远程脉冲
/// 该神经元存在本地脉冲,存在则返回ture
/// 该神经元存在远程脉冲,返回远程脉冲所在的进程id集合
/// </summary>
/// <param name="is_post_syn">是否存在本地脉冲</param>
/// <param name="remote_proc_id">远程脉冲所在的进程id集合</param>
void judge_remote_pluses(const int sender_gid, bool& is_local,std::vector<int>& remote_proc_id);
void ConnectionManager::judge_remote_pluses(const int sender_gid,bool& is_local, std::vector<int>& remote_proc_id)
{
// 获取分区情况
std::vector<int> partition(0);
// 本进程的id
int rank_ = kernel().mpi_manager.get_rank();
if (local_adjcency[sender_gid].size() == global_adjacency[sender_gid].size())
{
is_local = true;
}
else if(local_adjcency[sender_gid].size() < global_adjacency[sender_gid].size())
{
for (int ii = 0; ii < global_adjacency[sender_gid].size(); ii++)
{
if (partition[global_adjacency[sender_gid][ii]] == rank_)
{
is_local = true;
}
else
{
remote_proc_id.push_back(partition[global_adjacency[sender_gid][ii]]);
}
}
}
}
那时候我就在想,这些事情是不是可以提前做,避免脉冲的脉冲的判断,比如定义一个std::unordered_map<int, std::vector<int>> communication_diagram这样一个通信图, key值是神经元的gid,value代表需要通信的进程id集合。
还有一点需要考虑,比如考虑如下种群创建实例
而不同population之间的创建需要设置突触的初始参数
// 神经元群落集合 种群中包括该神经元的所有初始参数
std::vector<Population *> populations;
// 突触参数集合 col代表前种群id row代表后种群id syn_params[i][j]表示连接这两个种群的参数
std::vector<std::vector< SynapseParams *>> syn_params;
// 神经元的邻接表
std::vector<std::vector<int>> global_adjacency;
// 全局每个神经元的出度
std::vector<int> global_out_degree;
那么创建种群的代码如下
int ConnectionManager::create(int num, const NeuronParams& nparams)
{
Population* pops = new Population(nparams);
pops->set_num_neurons(num);
设置神经元的gid
int min_gid = tail_pointer;
int max_gid = tail_pointer + num;
for (int ii = min_gid, jj = 0; ii < max_gid; ii++, jj++)
{
pops->add_neuron_gid(jj, ii);
}
tail_pointer = max_gid;
// 调整全局邻接矩阵的大小
global_adjacency.resize(tail_pointer);
// 设置每个突触的出度
global_out_degree.resize(tail_pointer);
//将种群加入种群集合
populations.push_back(pops);
//设置突触参数大小
syn_params.resize(populations.size(), std::vector<SynapseParams*>(populations.size()));
return pops->get_group_id();
}
明天计划写connect的代码