【PyTorch】训练过程可视化

news2024/11/30 6:41:26

文章目录

  • 1. 训练过程中的可视化
    • 1.1. alive_progress
    • 1.2. rich.progress
  • 2. 训练结束后的可视化
    • 2.1. tensorboardX
      • 2.1.1. 安装
      • 2.1.2. 使用

1. 训练过程中的可视化

主要是监控训练的进度。

1.1. alive_progress

  • 安装
pip install alive_progress
  • 使用
from alive_progress import alive_bar
with alive_bar(num_epochs, theme='classic') as bar:
        for epoch in range(num_epochs):
        	...
        	bar()

  • 效果
    运行中
    运行结束

1.2. rich.progress

  • 安装
pip install rich
  • 使用
from rich.progress import track
for epoch in track(range(num_epochs)):
	...
  • 效果:右边的时间在运行时显示剩余时间,运行结束显示消耗的总时间。
    运行中
    运行结束

2. 训练结束后的可视化

主要原理是在运行过程中记录变量值、运行时间等信息到文件中,然后根据该文件绘制图表。

2.1. tensorboardX

2.1.1. 安装

pip install tensorboardX

VSCode集成了TensorBoard支持,不过事先要安装torch-tb-profiler,安装命令:

pip install torch-tb-profiler

安装完成后,在Python源文件中tensorboardX模块导入处,点击“启动TensorBoard会话”按钮,然后选择运行事件所在目录,默认选择当前目录即可,tensorboard会自动在当前目录查找运行事件,由此即可启动TensorBoard。开启TensorBoard页面后不要关闭,数据更新后,直接点击刷新按钮即可导入新数据。
启动TensorBoard会话
logdir
tensorboard
此外,也可以通过以下命令在浏览器查看tensorboard可视化结果:

# logdir为运行事件所在目录
> tensorboard logdir=runs
TensorFlow installation not found - running with reduced feature set.
I1202 20:37:50.824767 15412 plugin.py:429] Monitor runs begin
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.14.0 at http://localhost:6006/ (Press CTRL+C to quit)
# 手动打开命令输出提供的本地服务器地址,如http://localhost:6006/

2.1.2. 使用

  • 直接创建对象
from tensorboardX import SummaryWriter
writer = SummaryWriter()
# writer.add_scalar():添加监控变量
writer.close()
  • 使用上下文管理器
from tensorboardX import SummaryWriter
with SummaryWriter() as writer:
	# writer.add_scalar():添加监控变量

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1290713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue 父传子组件传参 defineProps

defineProps 属性:用于接收父组件传递过来的数据。 注意:如果 defineProps 接收的参数名,和已有变量名相同,就会造成命名冲突。 语法格式: // 无限制 const props defineProps([参数名, 参数名]);// 限制数据类型 …

高德地图vue实现热力图(缩放时展示不同数据)

高德地图插件引入省略。。。 效果图 1.1&#xff1a;初始化时&#xff0c;按省进行统计 1.2&#xff1a;地图放大一定程度时&#xff0c;按市进行统计 2. 同一个经纬点可支持展示两个数据 代码实现 <template><div class"infringement-map"><di…

西南科技大学C++程序设计实验七(继承与派生二)

一、实验目的 1. 掌握多继承程序设计 2. 掌握虚基类编程 3. 拓展学习可视化程序设计中的继承与派生应用 二、实验任务 重点:掌握虚基类的定义与实现,拓展其功能。 阅读分析、完善程序。下面程序(1)与程序(2)分别是没有使用虚基类和使用虚基类的代码,其中A是最上层基…

MA营销自动化如何助力商家实现精准营销?

惟客数据 MAP 是一个跨渠道和设备的自动化营销平台&#xff0c;允许接触点编排个性化旅程&#xff0c;通过短信、社交推送等方式为您的客户创建无缝的个性化体验&#xff0c;加强客户关系并赢得忠诚度。可与惟客数据CDP 产品无缝配合使用&#xff0c;通过数据驱动做出更实时&am…

javaee实验:文件上传及拦截器的使用

目录 文件上传ModelAttribute注解实验目的实验内容实验过程项目结构编写代码结果展示 文件上传 Spring MVC 提供 MultipartFile 接口作为参数来处理文件上传。 MultipartFile 提供以下方法来获取上传的文件信息&#xff1a;  getOriginalFilename 获取上传的文件名字&#x…

ACM32F403/F433 12 位多通道,支持 MPU 存储保护功能,应用于工业控制,智能家居等产品中

ACM32F403/F433 芯片的内核基于 ARMv8-M 架构&#xff0c;支持 Cortex-M33 和 Cortex-M4F 指令集。芯片内核 支持一整套DSP指令用于数字信号处理&#xff0c;支持单精度FPU处理浮点数据&#xff0c;同时还支持Memory Protection Unit &#xff08;MPU&#xff09;用于提升应用的…

Stable Diffusion AI绘画系列【17】:绘本童话风格场景

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

AidLux:手机/平板上的Linux环境与AI开发利器

AidLux是一个基于ARM架构的跨生态&#xff08;鸿蒙/AndroidLinux&#xff09;一站式智能物联网&#xff08;AIoT&#xff09;应用开发和部署平台&#xff0c;正受到越来越多开发者和用户的青睐。既可以作为手机/平板上的一个Linux环境使用&#xff0c;也可以作为AI开发利器以发…

文本编辑软件:Ulysses mac介绍说明

Ulysses mac是面向 Mac、iPhone 和 iPad 的一站式写作环境。Ulysses 提供令人愉悦、专注的写作体验&#xff0c;加上高效文稿管理、无缝同步以及灵活导出。markdown 可以直接对于文本进行不同类型的分类、编辑&#xff0c;比如标题、注解、评论之类的内容。 Ulysses让注意力专…

java学习part38一些常用类和api

151-常用类与基础API-其它常用类的使用&#xff1a;BigInteger、BigDecimal、Random等_哔哩哔哩_bilibili 1.System 2.Runtime 3.java.lang.math 4.java.math 4.1大整数类 4.2大浮点数类 4.3随机类

P1005 [NOIP2007 提高组] 矩阵取数游戏

网址&#xff1a;P1005 [NOIP2007 提高组] 矩阵取数游戏 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 动态规划和高精度的组合&#xff0c;使我的滨州旋转 最后只得了80&#xff0c;两个测试点超时了 看题解有人是用了int128来做的&#xff0c;明天学一下 我的递归思路和…

RPC简介和grpc的使用

文章目录 Rpc基本概念RPC 机制和实现过程RPC的机制的诞生和基础概念总结下RPC执行步骤&#xff1a; 安装gRPC和Protobuf安装proto 服务定义gRPC 优势 gRPC入门简单使用 代码仓库 Rpc基本概念 RPC&#xff08;Remote Procedure Call&#xff09;远程过程调用&#xff0c;是一种…

Qt之QGraphicsView —— 笔记1:绘制简单图元(附完整源码)

效果 相关类介绍 QGraphicsView类提供了一个小部件,用于显示QGraphicsScene的内容。QGraphicsView在可滚动视口中可视化。QGraphicsView将滚动其视口,以确保该点在视图中居中。 QGraphicsScene类 提供了一个用于管理大量二维图形项的场景。请注意,QGraphicsScene没有自己的视…

HBase-架构与设计

HBase架构与设计 一、背景二、HBase概述1.设计特点2.适用场景2.1 海量数据2.2 稀疏数据2.3 多版本数据2.4 半结构或者非结构化数据 三、数据模型1.RowKey2.Column Family3.TimeStamp 四、HBase架构图1.Client2.Zookeeper3.HMaster4.HRegionServer5.HRegion6.Store7.StoreFile8.…

分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测

分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测 目录 分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输…

MySQL系列(一):索引篇

为什么是B树&#xff1f; 我们推导下&#xff0c;首先看下用哈希表做索引&#xff0c;是否可以满足需求。如果我们用哈希建了索引&#xff0c;那么对于如下这种SQL&#xff0c;通过哈希&#xff0c;可以快速检索出数据&#xff1a; select * from t_user_info where id1;但是这…

从零构建属于自己的GPT系列3:模型训练2(训练函数解读、模型训练函数解读、代码逐行解读)

&#x1f6a9;&#x1f6a9;&#x1f6a9;Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1&#xff1a;数据预处理 从零构建属于自己的GPT系列2&#xff1a;模型训…

Edge调用Aria2下载

一、准备工作 1、Edge浏览器&#xff1a;Windows系统自带或点击下载&#xff1b;   2、Aria2 gui&#xff1a;点击github下载或自行搜索下载其他版本&#xff1b; 二、启动Aria2 gui 解压下载的Aria2 gui到任意目录&#xff0c;点击“Aria2c启动器”或“AriaNg启动器”皆可。…

翻译: 大语言模型LLMs能做什么和不能做什么 保存笔记What LLMs can and cannot do

生成式 AI 是一项惊人的技术&#xff0c;但它并非万能。在这个视频中&#xff0c;我们将仔细看看大型语言模型&#xff08;LLM&#xff09;能做什么&#xff0c;不能做什么。我们将从我发现的一个有用的心理模型开始&#xff0c;了解它能做什么&#xff0c;然后一起看看 LLM 的…

webrtc网之sip转webrtc

OpenSIP是一个开源的SIP&#xff08;Session Initiation Protocol&#xff09;服务器&#xff0c;它提供了一个可扩展的基础架构&#xff0c;用于建立、终止和管理VoIP&#xff08;Voice over IP&#xff09;通信会话。SIP是一种通信协议&#xff0c;用于建立、修改和终止多媒体…