使用Pytoch实现Opencv warpAffine方法

news2025/2/24 23:41:08

随着深度学习的不断发展,GPU/NPU的算力也越来越强,对于一些传统CV计算也希望能够直接在GPU/NPU上进行,例如Opencv的warpAffine方法。Opencv的warpAffine的功能主要是做仿射变换,如果不了解仿射变换的请自行了解。由于Pytorch的图像坐标系(图像左上角对应坐标(-1, -1)右下角对应坐标(1, 1))与Opencv的坐标系(图像左上角对应坐标(0, 0)右下角对应坐标(w - 1, h - 1))有差异,故无法直接使用Opencv的warp矩阵对Pytorch数据进行变换。
主要参考文章:https://zhuanlan.zhihu.com/p/349741938


本文逻辑推理部分主要是参照上述的参考文章,这里再简单推导一遍。后面会给出基于该公式推导的Pytorch实现。

下面公式简单介绍了原始图片中 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)点通过仿射变化到输出图片 ( x 2 , y 2 ) (x_2, y_2) (x2,y2)点的过程,假设 ( x , y ) (x, y) (x,y)对应Opencv图像坐标系。

[ x 2 y 2 1 ] = [ a b c d e f 0 0 1 ] [ x 1 y 1 1 ] \begin{bmatrix} x_2\\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ y_1 \\ 1 \end{bmatrix} x2y21 = ad0be0cf1 x1y11
现在要将Opencv图像坐标系下的 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)点映射到Pytorch的图像坐标系下 ( u 1 , v 1 ) (u_1, v_1) (u1,v1)点,由于Pytorch的图像坐标系是从-1到1,所以对Opencv的坐标做如下变化即可。注,由于Opencv坐标从0开始,所以对于原图宽为src_w,高为src_h实际右下角的坐标应该是 ( s r c w − 1 , s r c h − 1 ) (src_w - 1, src_h - 1) (srcw1,srch1)
u 1 = x 1 − s r c w − 1 2 s r c w − 1 2 = 2 x 1 s r c w − 1 − 1 u_1 = \frac{x_1 - \frac{src_w - 1}{2} }{\frac{src_w - 1}{2}} = \frac{2x_1}{src_w - 1} -1 u1=2srcw1x12srcw1=srcw12x11
v 1 = y 1 − s r c h − 1 2 s r c h − 1 2 = 2 y 1 s r c h − 1 − 1 v_1 = \frac{y_1 - \frac{src_h - 1}{2} }{\frac{src_h - 1}{2}} = \frac{2y_1}{src_h - 1} -1 v1=2srch1y12srch1=srch12y11
写成矩阵乘的形式:
[ u 1 v 1 1 ] = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] [ x 1 y 1 1 ] \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ y_1 \\ 1 \end{bmatrix} u1v11 = srcw12000srch120111 x1y11

那么同理将仿射变化后Opencv图像坐标系下的 ( x 2 , y 2 ) (x_2, y_2) (x2,y2)点映射到Pytorch的图像坐标系下 ( u 2 , v 2 ) (u_2, v_2) (u2,v2)点,其中dst_w为仿射变化后输出图片的宽度,dst_h为仿射变化后输出图片的高度:
[ u 2 v 2 1 ] = [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] [ x 2 y 2 1 ] \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2\\ y_2 \\ 1 \end{bmatrix} u2v21 = dstw12000dsth120111 x2y21
然后将上面两个公式代入最开始的仿射变化公式中:
[ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 [ u 2 v 2 1 ] = [ a b c d e f 0 0 1 ] [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] − 1 [ u 1 v 1 1 ] \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} dstw12000dsth120111 1 u2v21 = ad0be0cf1 srcw12000srch120111 1 u1v11
整理得到:
[ u 2 v 2 1 ] = [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] [ a b c d e f 0 0 1 ] [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] − 1 [ u 1 v 1 1 ] \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} u2v21 = dstw12000dsth120111 ad0be0cf1 srcw12000srch120111 1 u1v11
引用参考文章中大佬的原话,这个暂时没在Pytorch官方文档中找到,但是通过实验,确实如此。

affine_grid定义为目标图到原图的变换

所以,Pytorch中使用的theta实际是从 ( u 2 , v 2 ) (u_2, v_2) (u2,v2) ( u 1 , v 1 ) (u_1, v_1) (u1,v1)的矩阵:

[ u 1 v 1 1 ] = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] [ a b c d e f 0 0 1 ] − 1 [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 [ u 2 v 2 1 ] \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} u1v11 = srcw12000srch120111 ad0be0cf1 1 dstw12000dsth120111 1 u2v21
故Opencv使用的theta到Pytorch的theta变换过程如下:
t h e t a ( p y t o r c h ) = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] t h e t a ( o p e n c v ) − 1 [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 theta_{(pytorch)} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} {theta}^{-1}_{(opencv)} \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} theta(pytorch)= srcw12000srch120111 theta(opencv)1 dstw12000dsth120111 1

最后给出对应代码实现:

"""
pip install numpy
pip install opencv-python
pip install opencv-python-headless
"""
import numpy as np
import cv2
import torch
import torch.nn.functional as F


def cal_torch_theta(opencv_theta: np.ndarray, src_h: int, src_w: int, dst_h: int, dst_w: int):
    m = np.concatenate([opencv_theta, np.array([[0., 0., 1.]], dtype=np.float32)])
    m_inv = np.linalg.inv(m)

    a = np.array([[2 / (src_w - 1), 0., -1.],
                  [0., 2 / (src_h - 1), -1.],
                  [0., 0., 1.]], dtype=np.float32)

    b = np.array([[2 / (dst_w - 1), 0., -1.],
                  [0., 2 / (dst_h - 1), -1.],
                  [0., 0., 1.]], dtype=np.float32)
    b_inv = np.linalg.inv(b)

    pytorch_m = a @ m_inv @ b_inv
    return torch.as_tensor(pytorch_m[:2], dtype=torch.float32)


def main():
    img_bgr = cv2.imread("1.png")
    src_h, src_w, _ = img_bgr.shape
    print(f"src image h:{src_h}, w:{src_w}")
    dst_h = src_h * 2
    dst_w = src_w * 2
    print(f"dst image h:{src_h}, w:{src_w}")

    theta = cv2.getRotationMatrix2D(center=(src_w // 2, src_h // 2), angle=-30, scale=2)
    # using opencv warpAffine
    warp_img_bgr = cv2.warpAffine(src=img_bgr,
                                  M=theta,
                                  dsize=(dst_w, dst_h),
                                  flags=cv2.INTER_LINEAR,
                                  borderValue=(0, 0, 0))
    cv2.imwrite("warp_img.jpg", warp_img_bgr)

    # using pytorch grid_sample
    torch_img_bgr = torch.as_tensor(img_bgr, dtype=torch.float32).unsqueeze(0).permute([0, 3, 1, 2])  # [N,C,H,W]
    torch_theta = cal_torch_theta(theta, src_h, src_w, dst_h, dst_w).unsqueeze(0)  # [N, 2, 3]
    grid = F.affine_grid(torch_theta, size=[1, 3, dst_h, dst_w])
    torch_warp_img_bgr = F.grid_sample(torch_img_bgr, grid=grid, mode="bilinear", padding_mode="zeros")

    torch_warp_img_bgr = torch_warp_img_bgr.permute([0, 2, 3, 1]).squeeze(0)  # [H, W, C]
    cv2.imwrite("torch_warp_img.jpg", torch_warp_img_bgr.numpy())

    # save concat img
    cv2.imwrite("compare_warp_img.jpg",
                np.concatenate([warp_img_bgr, torch_warp_img_bgr.numpy()], axis=1))


if __name__ == '__main__':
    main()

下图是生成的compare_warp_img.jpg图片,左边是通过Opencv warpAffine得到的图片,右边是通过Pytorch grid_sample得到的图片。可以看到基本是一致,如果使用专业的图像对比工具还是能看到像素差异(很难完全对齐)。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1290089.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每日一题:LeetCode-75. 颜色分类

每日一题系列(day 12) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50e…

【多线程】线程的三种常见创建方式

文章目录 线程创建方式1——Thread线程创建方式2——Runnable线程创建方式2——匿名内部类线程创建方式3——Callable、FutureTask,带返回值 线程其实是程序中的一条执行路径。 那怎样的程序才是多线程程序呢? 例如12306网站就是支持多线程的,因为同时可…

通过仿真理解信道化接收机分析过程

概要 信道化从子信道带宽划分上可分为临界抽取和非临界抽取两种,从各子信道中心频率布局上可分为偶型排列和奇型排列,从处理流程上可分为信道化分析与信道化综合过程。本文主要通过仿真来理解偶型排列/临界抽取/信道化分析过程。 基本原理 常规的数字…

基于KSZ9897VLAN 虚拟WAN网络接口

目录 1:先看看高通的8327是如何虚拟网络接口 2: Linux 内核中选上802.1Q 3: 实际效果展示 4:配置使用 1:先看看高通的8327是如何虚拟网络接口 rootOpenWrt:~# cat /etc/config/wirelessconfig wifi-device wifi0option type qcawifioption macaddr 68:89:75:04:…

三十九、TCC模式

目录 一、定义 1、需要实现的方法: 2、优点: 3、缺点: 二、原理 1、例子: 2、工作模型图: 3、空回滚和业务悬挂 三、实现TCC模式 1、编写TCC服务接口 2、实现TCC服务接口 一、定义 TCC模式是Translucent Tr…

三焦不通,百病丛生?三焦指的到底是什么?

本 期 导 读 今天来讲一讲,看起来比较古怪的腑——三焦。 三焦的名字虽出于《内经》,但对它的描述却不像其他十一脏腑那么具体,留下了极大的解说空间。 三焦真的不可捉摸吗?当然不是。本文就带你揭开三焦的那层似有还无的面纱…

SQL手工注入漏洞测试(Access数据库)-墨者

———靶场专栏——— 声明:文章由作者weoptions学习或练习过程中的步骤及思路,非正式答案,仅供学习和参考。 靶场背景: 来源: 墨者学院 简介: 安全工程师"墨者"最近在练习SQL手工注入漏洞&#…

YOLOv8改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)

一、本文介绍 本文给大家带来的改进是Triplet Attention三重注意力机制。这个机制,它通过三个不同的视角来分析输入的数据,就好比三个人从不同的角度来观察同一幅画,然后共同决定哪些部分最值得注意。三重注意力机制的主要思想是在网络中引入…

社区生鲜店铺线上管理平台,提升店铺运营管理效率的秘密武器

智慧零售是一种基于现代技术的零售模式,通过人工智能、大数据分析和物联网等先进技术的运用,对商品销售、用户需求和市场趋势进行深度分析和预测,从而实现精细化管理和个性化服务。智慧零售不仅可以优化商品的库存管理和运营效率,…

java单人聊天

服务端 package 单人聊天;import java.awt.BorderLayout; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import…

【源码解析】聊聊阻塞队列之BlockingArrayQueue

阻塞队列 阻塞队列:顾名思义 首先它是一个队列,而一个阻塞队列在数据结构中所起的作用大致如下入所示。 当阻塞队列是空时,从队列中获取元素的操作将会被阻塞。当阻塞队列时满的时,往队列里添加元素的操作将会被阻塞。 试图从空的…

【沐风老师】3DMAX切片工具插件安装使用方法详解

3DMAX切片工具安装使用方法 3DMAX切片工具,该工具沿世界坐标轴以规则的间隔对对象进行切片处理。例如,对于快速均匀细分复杂网格、顶点绘制或应用“弯曲”修改器非常有用。 【适用版本】 3dMax2016 - 2023(不仅限于此范围) 【安装…

Spring Cloud Stream 4.0.4 rabbitmq 发送消息多function

使用 idea 创建 Springboot 项目 添加 Spring cloud stream 和 rabbitmq 依赖 pom文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchem…

多人聊天室

1.创建服务面板 package yiduiy;import java.awt.BorderLayout; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.Has…

国内AI大模型已近80个,哪个最有前途?

目前&#xff0c;国内已经推出了近80个人工智能大模型&#xff0c;这些大模型各有优势&#xff0c;难以直接判断哪个最有前途。然而&#xff0c;以下几个大模型值得关注&#xff1a; 1、华为云盘古大模型&#xff1a;盘古大模型聚焦于为行业服务&#xff0c;包括自然语言、视觉…

基于Vue.js的厦门旅游电子商务预订系统的设计和实现

项目编号&#xff1a; S 030 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S030&#xff0c;文末获取源码。} 项目编号&#xff1a;S030&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 景点类型模块2.2 景点档案模块2.3 酒…

吴恩达《机器学习》11-1-11-2:首先要做什么、误差分析

一、首先要做什么 选择特征向量的关键决策 以垃圾邮件分类器算法为例&#xff0c;首先需要决定如何选择和表达特征向量 &#x1d465;。视频提到的一个示例是构建一个由 100 个最常出现在垃圾邮件中的词构成的列表&#xff0c;根据这些词是否在邮件中出现来创建特征向量&…

Windows磁盘管理中硬盘无法初始化怎么办?

硬盘未出现在“此电脑”选项下的情况并不少见&#xff0c;当您打开磁盘管理&#xff0c;它要么显示为磁盘未知&#xff0c;要么显示为未分配的空间&#xff0c;或者只是不显示磁盘容量。为了访问您的硬盘并充分利用它&#xff0c;您需要对其进行初始化。不幸的是&#xff0c;您…

CTF 6

信息收集 话不多说&#xff0c;nmap进行信息收集&#xff01; 存活主机探测 服务版本探测 端口探测 漏洞脚本探测 UDP端口探测 渗透测试 先看看网站的首页&#xff0c;发现了几个用户&#xff1a; 直接先保存下来吧&#xff0c;以防后面会用到。 SQL注入 看到一个read mor…

行业研究:2023年中国游戏陪玩行业市场现状分析

近年来随着我国游戏行业的不断发展&#xff0c;我国游戏用户规模也是随着稳步上升&#xff0c;给游戏陪玩行业带来了稳定的用户基础。在用户规模增长的同时&#xff0c;随着经济、文化的快速发展&#xff0c;我国娱乐技能社交也随之逐渐兴起。而作为我国娱乐技能社交比重较大的…