整数和浮点数在内存中的存储​(大小端详解)

news2025/2/25 12:04:06

目录

一、整数在内存中的存储

二、大小端字节序和字节序判断

2.1为什么有大小端?​

2.2请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)-百度笔试题

方法一(char*强制类型转换):

方法二(联合体)

若想了解更多联合体的知识,请见拙作:

2.3unsign打印负数

2.4下列代码打印的结果

2.5下面代码的输出结果

三、浮点数在内存中的存储

3.1 浮点数存的过程​

IEEE 754 对有效数字M和指数E,还有一些特别规定。​

​至于指数E,情况就比较复杂​

3.2 浮点数取的过程​

指数E从内存中取出还可以再分成三种情况:​

E不全为0或不全为1​

E全为0​

E全为1​


一、整数在内存中的存储

在讲解操作符的时候,我们就讲过了下面的内容:
整数的2进制表示方法有三种,即 原码、反码和补码​
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最
高位的一位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。

    
负整数的三种表示方法各不相同。如图:


原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。​
对于整形来说:数据存放内存中其实存放的是补码


二、大小端字节序和字节序判断

大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

根据此图判断此时机器为小端,因为44作为低字节内容(按顺序排在最后)应放在低地址处。

2.1为什么有大小端?​

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit 位,但是在C语言中除了8 bit 的 char 之外,还有16 bit (2个字节)的 short 型,32 bit (4个字节)的 long 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

2.2请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)-百度笔试题

方法一(char*强制类型转换):

int check_sys()
{
    int i = 1;
    return (*(char*)&i);
}
int main()
{
    int ret = check_sys();
    if (ret == 1)
    {
        printf("小端\n");
    }
    else
    {
        printf("大端\n");
    }
    return 0;
}
  • int i = 1; 定义了一个整数 i 并赋值为1。在内存中,整数通常占用4个字节(这取决于系统,但在这里我们假设为4字节)。如果系统是小端的,这四个字节的存储形式将是 01 00 00 00。如果是大端的,存储形式将是 00 00 00 01

  • return ((char)&i); 这行代码做了以下操作:

      1、&i: 获取 i 的地址。

      2、(char*)&i: 将 i 的地址转换为 char 指针。由于 char 是1字节的,我们可以通过 char 指针来        访问整数的每一个字节。

      3、(char)&i: 通过 char 指针解引用,获取整数的第一个字节。

  • 如果系统是小端的,那么整数的第一个字节将是 1(或者 01 in hex)。如果是大端的,那么整数的第一个字节将是 0(或者 00 in hex)。

  • 在 main() 函数中,根据 ret 的值(即整数的第一个字节)判断系统是大端还是小端,并打印相应的结果。

方法二(联合体)

若想了解更多联合体的知识,请见拙作:

返回1是小端,返回0是大端

如果系统是小端的,那么在内存中存储这个整数的最低字节(也就是字节 c)将会是1,因为最低字节存储在最低的内存地址处。而如果系统是大端的,那么最低有效字节将会是0。

int check_sys()
{
	union
	{
		int i;
		char c;
	}un;
	un.i = 1;
	return un.c;
}
 
 
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else {
		printf("大端\n");
	}
	return 0;
}

2.3unsign打印负数

int main()
{
	char a = -128;
	  //10000000000000000000000010000000
    //11111111111111111111111101111111
    //11111111111111111111111110000000
    //10000000 - a
    //打印时发生整型提升
    //11111111111111111111111110000000
	
	//sign char 的取值范围:-128~127
	//unsigned char的取值范围:0~255

	printf("%u\n", a);//4,294,967,168
	//%u是十进制的形式打印无符号的整数
	return 0;
}

char类型存储的顺序如下: 

 

2.4下列代码打印的结果

int main()
{
	char a[1000];
	int i;
	for (i = 0; i < 1000; i++)
	{
	    a[i] = -1 - i;
	}
	printf("%d", strlen(a));//255
	return 0;
}

  • char的范围:-128~127

  • a[1]~a[1000]的值规律如下:

    -1 -2 -3 ...... -128 127 126 125 ...... 5 4 3 2 1 0 -1 -2 ...... -128 127 126 ......5 4 3 2 1……

  • strlen求字符串长度找的是\0,\0的ASCII码值是0,其实找的就是0,所以到0就终止

  • 所以strlen计算的长度为:128+127 = 255

2.5下面代码的输出结果

int main()
{
    int a[4] = { 1, 2, 3, 4 };
    //小端环境
    int* ptr1 = (int*)(&a + 1);
    int* ptr2 = (int*)((int)a + 1);
    printf("%x" ,ptr1[-1]);
    printf("%x", *ptr2);
              
    return 0;
}

ptr1[-1]--> *(ptr1 - 1)-->*((&a+1) - 1)-->4 

三、浮点数在内存中的存储

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。​
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。​
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。​
IEEE 754规定:​
对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M

int main()
{
    int n = 9;
    float* pFloat = (float*)&n;//int*

    printf("n的值为:%d\n", n);//9
    printf("*pFloat的值为:%f\n", *pFloat);//0.000000

    *pFloat = 9.0;
    printf("num的值为:%d\n", n);//1091567616
    printf("*pFloat的值为:%f\n", *pFloat);//9.000000
    return 0;
}
  • 创建了一个浮点数指针 pFloat 并将其指向 n 的内存地址。此时,pFloat 指向的内存中存储的是一个整数值 9。

  • 通过 pFloat 打印该值时,由于 pFloat 是一个浮点数指针,所以它会尝试将内存中的值解释为浮点数。在大多数系统上,整数 9 和浮点数 9.0 在内存中的表示是不同的。

  • 接下来,你通过 pFloat 将该内存位置的值设置为 9.0。这意味着你现在改变了原来存储整数 9 的内存,使其现在包含一个浮点数的表示。

  • 再次尝试打印整数 n 的值时,它会尝试将内存中的浮点数表示解释为一个整数。这就是为什么你得到了一个奇怪的数字 1091567616(这个数字是 9.0 的 IEEE 754 单精度表示形式解释为整数时的结果)。

  • 而当打印 *pFloat 的值时,它正确地显示为 9.0。

3.1 浮点数存的过程​

但是因为存储有可能会改变原先的值。
10:       5.5
2:        101.1
科学计数法:1.011 * 2^2
          (-1)^0 *1.011 *2^2
S = 0
E = 2
M = 1.011

int main()
{
	float f = 99.7f;
	printf("%f\n", f);
	//
	//0 10000001 01100000000000000000000
	//0x40 B0 00 00
	//1.01100000000000000000000 *2^2
	return 0;
}

IEEE 754 对有效数字M和指数E,还有一些特别规定。​

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。​
IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

​至于指数E,情况就比较复杂​

首先,E为一个无符号整数(unsigned int)​
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

3.2 浮点数取的过程​

指数E从内存中取出还可以再分成三种情况:​

E不全为0或不全为1​


这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。​
比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其
阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位
00000000000000000000000,则其二进制表示形式为:​
1 0 01111110 00000000000000000000000

(以下两种了解便可)

E全为0​

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还
原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。​
1 0 00000000 00100000000000000000000

E全为1​

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);​
1 0 11111111 00010000000000000000000

  

好了,关于浮点数的表示规则,就说到这里。

今天就先到这里了!!!

看到这里了还不给博主扣个:
⛳️ 点赞☀️收藏 ⭐️ 关注!

你们的点赞就是博主更新最大的动力!
有问题可以评论或者私信呢秒回哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1285668.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【langchain实战】开源项目-RasaGpt

1、概述 RasaGpt是一个建立在 Rasa 和 Langchain 之上的没有显示界面的LMM聊天机器人平台。它是一个Rasa和Telegram这种利用像Langchain这样的LMM库进行索引、检索和上下文注入的样板及参考实现。 开源地址&#xff1a; GitHub - paulpierre/RasaGPT: &#x1f4ac; RasaGPT is…

石原子科技荣登「2024 中国企业服务云图」,引领数据价值在线化革命,助力企业省心省钱更安全

近日&#xff0c;2023 年中国 SaaS 大会在美丽的苏州太湖隆重召开。本次大会由吴中区人民政府、苏州市工信局指导&#xff0c;崔牛会主办&#xff0c;苏州太湖国家旅游度假区管委会协办。会上&#xff0c;知名B2B企业服务平台崔牛会联合火山引擎正式发布了「2024 中国企业服务云…

JS浮点数精度问题及解决方案

前端面试大全JS浮点数精度问题及解决方案 &#x1f31f;经典真题 &#x1f31f;浮点数精度常见问题 &#x1f31f;为什么会有这样的问题 &#x1f31f;真题解答 &#x1f31f;总结 &#x1f31f;经典真题 为什么 console.log(0.20.10.3) 得到的值为 false &#x1f31f;…

C语言之多重循环

目录 二重循环 用break语句强制结束循环 显示图形 绘制等腰直角三角形 多重循环 continue语句 将循环语句的循环体作为循环语句&#xff0c;就可以进行二重、三重循环。这样的循环称为多重循环。 我们先来了解二重循环 二重循环 在之前我们学习到的循环中的程序都比较简…

如何批量修改ppt中的字体?

ppt制作已经属于是复杂的操作了&#xff0c;当我们想要更换ppt中的字体&#xff0c;有没有什么快捷的方法呢&#xff1f;今天分享两个方法&#xff0c;一键修改ppt文件字体。 方法一&#xff1a; 找到功能栏中的编辑选项卡&#xff0c;点击替换 – 替换字体&#xff0c;在里面…

Amazon CodeWhisperer 正式可用, 并面向个人开发者免费开放

文章作者&#xff1a;深度-围观 北京——2023年4月18日&#xff0c;亚马逊云科技宣布&#xff0c;实时 AI 编程助手 Amazon CodeWhisperer 正式可用&#xff0c;同时推出的还有供所有开发人员免费使用的个人版&#xff08;CodeWhisperer Individual&#xff09;。CodeWhisperer…

【开源项目】Windows串口通信组件 -- Com.Gitusme.IO.Ports.SerialPort

目录 1、项目介绍 2、组件集成 1&#xff09;下载地址&#xff1a; 2&#xff09;添加项目依赖 3、使用方法 4、GitHub项目地址 1、项目介绍 Com.Gitusme.IO.Ports.SerialPort 是一款 Windows 串口通信组件&#xff0c;基于.Net Core 3.1 开发&#xff0c;支持 Console、Wi…

【江科大--32课程中讲解到的外部设备】

一、传感器模块&#xff08;GPIO模块&#xff09; 1.基本介绍 传感器模块&#xff1a;传感器元件&#xff08;光敏电阻/热敏电阻/红外接收管等&#xff09;的电阻会随外界模拟量的变化而变化&#xff0c;通过与定值电阻分压即可得到模拟电压输出&#xff0c;再通过电压比较器进…

黑豹程序员-java发邮件,发送内容支持html,带多附件的案例

介绍 发邮件mail是常见的软件功能&#xff0c;下面利于spring和java的mail库实现发送内容支持html&#xff0c;带多附件的案例 开启SMTP邮件发送协议 谁提供的SMTP邮件服务&#xff0c;就找谁开启。QQ邮箱类似。 依赖 <!--Java MAil 发送邮件API--><dependency&g…

契约锁2023年伙伴大会连下58城,顺利收官!

10月以来&#xff0c;携手全国58城的IT伙伴&#xff0c;共同探讨电子签章海量市场下的发展机遇以及合作模式、交流分享电子签章海量市场机遇、体验电子签章产品在组织数字化建设中的应用价值。 以简单易用、方便实施的产品&#xff0c;和开放共享政策&#xff0c;广结伙伴、共建…

【Mysql】一篇博客搞懂Mysql索引、全面剖析底层结构(建议收藏)

&#x1f308;欢迎来到Mysql专栏 &#x1f64b;&#x1f3fe;‍♀️作者介绍&#xff1a;前PLA队员 目前是一名普通本科大三的软件工程专业学生 &#x1f30f;IP坐标&#xff1a;湖北武汉 &#x1f349; 目前技术栈&#xff1a;C/C、Linux系统编程、计算机网络、数据结构、Mysq…

Mongodb 开启oplog,java监听oplog并写入关系型数据库

开启Oplog windows mongodb bin目录下找到配置文件/bin/mongod.cfg,配置如下&#xff1a; replication:replSetName: localoplogSizeMB: 1024双击mongo.exe 执行 rs.initiate({_id: "local", members: [{_id: 0, host: "localhost:27017"}]})若出现如…

【已解决】MySQL:执行存储过程报错(MySQL字符集和排序方式冲突)

目录 问题现象&#xff1a; 问题分析&#xff1a; 解决方法&#xff1a; 拓展&#xff1a; 1、转换条件两边的字段或值为二进制数据&#xff1a; 2、转换条件两边的字段或值的字符集和排序方式&#xff1a; 3、修改列、表、库的字符集和排序方式 参考链接&#xff1a; 问…

托盘四向穿梭车自动化密集库供应|单机智能向系统智能跨越的HEGERLS托盘四向车系统

随着物流产业的迅猛发展&#xff0c;托盘四向穿梭式自动化密集仓储系统可认为是在穿梭车货架系统基础上提出的一种新仓储概念。托盘四向穿梭式立体库因其在流通仓储体系中所具有的高效密集存储功能优势、运作成本优势与系统化智能化管理优势&#xff0c;已发展为仓储物流的主流…

第73讲:深入理解MySQL数据库InnoDB存储引擎:内存结构、磁盘结构与后台线程全面解析

文章目录 1.InnoDB存储引擎的架构2.InnoDB存储引擎的内存结构2.1.Buffer Pool缓冲池2.2.Change Buffer更改缓冲区2.3.自适应Hash索引2.4.Log Buffer日志缓冲区 3.InnoDB存储引擎的磁盘结构3.1.System Tablespace系统表空间3.2.File-Per-Table Tablespaces每个表都有单独的表空间…

基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验

工作中经常会使用到轻量级的网络模型来进行开发&#xff0c;所以平时也会常常留意使用和记录&#xff0c;在前面的博文中有过很多相关的实践工作&#xff0c;感兴趣的话可以自行移步阅读即可。 《移动端轻量级模型开发谁更胜一筹&#xff0c;efficientnet、mobilenetv2、mobil…

VS2022 显示参数类型

VS2022 显示参数类型 VS2022的智能感知功能非常强大&#xff0c;提供了类似clangd的IntelliSense。 设置方法 有时候需要代码补全&#xff0c;代码类型补全提示&#xff0c;极有可能消耗内存和运存。所以记录一下开关这个。

IDEA启动失败报错解决思路

IDEA启动失败报错解决思路 背景&#xff1a;在IDEA里安装插件失败&#xff0c;重启后直接进不去了&#xff0c;然后分析问题解决问题的过程记录下来。方便下次遇到快速解决。也是一种解决问题的思路&#xff0c;分享出去。 启动报错信息 Internal error. Please refer to https…

无频闪护眼灯哪个好?顶级无蓝光频闪护眼台灯推荐

国家卫生健康委员会疾控局宋士勋表示&#xff0c;根据近期发布的2021年监测数据来看&#xff0c;截至2020年&#xff0c;我国儿童青少年总体的近视率是52.7%&#xff0c;从不同年龄段来看&#xff0c;幼儿园6岁孩子的近视率达到14.3%&#xff0c;小学达到35.6%&#xff0c;初中…

Tubulysin C 微管蛋白C 205304-88-7

Tubulysin C 微管蛋白C 205304-88-7 英文名称&#xff1a;Tubulysin C 中文名称&#xff1a;微管蛋白C 化学名称&#xff1a;(2S,4R)-4-[[2-[(1R,3R)-1-乙酰氧基-4-甲基-3-[[(2S,3S)-3-甲基-2-[[(2R)-1 -甲基哌啶-2-羰基]氨基]戊酰基]-(丙酰氧基甲基)氨基]戊基]-1,3-噻唑-4-羰基…