计算机网络:传输层——多路复用与解复用

news2024/11/16 17:41:43

文章目录

  • 前言
  • 一、Socket(套接字)
  • 二、多路复用/解复用
  • 三、多路解复用
    • (1)多路解复用原理
    • (2)无连接(UDP)多路解复用
    • (3)面向连接(TCP)的多路解复用
  • 总结


前言

发送方法,接收方多路复用原理、UDP和TCP多路解复用。。


一、Socket(套接字)

一些名词:
在这里插入图片描述

传输层和应用层之间提供服务是如何

  • 位置:层间界面的SAP ( TCP/IP: socket)
  • 形式:应用程序接口API ( TCP/IP : socket API)

传输层提供的服务——需要穿过层间的信息:

  • 层间接口必须要携带的信息
    • 要传输的报文(对于本层来说:SDU)
    • 谁传的:对方的应用进程的标示:IP+TCP(UDP)端口
    • 传给谁:对方的应用进程的标示:对方的IP+TCP(UDP)端口号
  • 传输层实体(tcp或者udp实体)根据这些信息进行TCP报文段(UDP数据报)的封装
    • 源端口号,目标端口号,数据等
    • 将IP地址往下交IP实体,用于封装IP数据报:源IP,目标IP

传输层提供的服务——层间信息的代表:

  • 如果Socket APT每次传输报文,都携带如此多的信息,太繁琐易错,不便于管理
  • 用个代号标示通信的双方或者单方:socket
  • 就像OS打开文件返回的句柄一样
    • 对句柄的操作,就是对文件的操作
  • TCP socket:
    • TCP服务,两个进程之间的通信需要之前要建立连接
      • 两个进程通信会持续一段时间,通信关系稳定
    • 可以用一个整数表示两个应用实体之间的通信关系,本地标示
    • 使穿过层间接口的信息量最小
    • TCP socket:源IP,源端口,目标IP,目标IP,目标端口
    • 总而言之:Tcp socket是本地端口和目标端口的一个标识,与端口号的概念不同,便于管理,使穿过层级的信息量减少,tcp socket利用四元组的形式来标识端口:源ip,源端口,目标ip,目标端口。
    • 本地应用层和传输层的约定只有他俩自己知道。

TCP之上的套接字(socket):

  • 对于使用面向连接服务(TCP)的应用而言,套接字是4元组的一个具有本地意义的标示
    • 4元组:(源IP,源port,目标IP,目标port)
    • 唯一的指定了一个会话(2个进程之间的会话关系)o应用使用这个标示,与远程的应用进程通信
    • 不必在每一个报文的发送都要指定这4元组
    • 就像使用操作系统打开一个文件,OS返回一个文件句柄一样,以后使用这个文件句柄,而不是使用这个文件的目录名、文件名
    • 简单,便于管理

在这里插入图片描述

在这里插入图片描述

传输层提供服务——层间信息代表:

  • UDP socket:
    • UDP服务,两个进程之间的通信需要之前无需建立连接
      • 每个报文都是独立传输的
      • 前后报文可能给不同的分布式进程
    • 因此,只能用一个整数表示本应用实体的标示
      • 因为这个报文可能传给另外一个分布式进程
    • 穿过层间接口的信息大小最小
    • UDP socket:本IP,本端口
    • 但是传输报文时:必须要提供对方IP,port
      • 接收报文时:传输层需要上传对方的IP,port

UDP之上的套接字(socket):

  • 对于使用无连接服务(UDP)的应用而言,套接字是2元组的一个具有本地意义的标示
    • 2元组:IP,port(源端指定〉
    • UDP套接字指定了应用所在的一个端节点(end point)
    • 在发送数据报时,采用创建好的本地套接字(标示ID),就不必在发送每个报文中指明自己所采用的ip和port
    • 但是在发送报文时,必须要指定对方的ip和udp port(另外一个段节点)

在这里插入图片描述

套接字(socket):

  • 进程向套接字发送报文或从套接字接收报文
  • 套接字<–>门户
    • 发送进程将报文推出门户,发送进程依赖于传输层设施在另外一侧的门将报文交付给接受进程
    • 接收进程从另外一端的门户收到报文(依赖于传输层设施)

在这里插入图片描述

二、多路复用/解复用

发送方主机多路复用

  • 从多个套接字接收来自多个进程的报文,根据套接字对应的IP地址和端口号等信息对报文段用头部加以封装(该头部信息用于以后的解复用)

接收方主机多路解复用

  • 根据报文段的头部信息中的IP地址和端口号将接收到的报文段发给正确的套接字(和对应的应用进程)

三、多路解复用

(1)多路解复用原理

  • 解复用作用:TCP或者UDP实体采用哪些信息,将报文段的数据部分交给正确的socket,从而交给正确的进程
  • 主机收到IP数据报
    • 每个数据报有源IP地址和目标地址
    • 每个数据报承载一个传输层报文段
    • 每个报文段有一个源端口号和目标端口号(特定应用有著名的端口号)
  • 主机联合使用P地址和端口号将报文段发送给合适的套接字

在这里插入图片描述

(2)无连接(UDP)多路解复用

  • 服务器端和客户端都会创建套接字
  • 在接收端,UDP套接字用二元组标识(目标IP地址、目标端口号)
  • 当主机收到UDP报文段:
    • 检查报文段的目标端口号
    • 用该端口号将报文段定位给套接字
  • 如果两个不同源IP地址/源端口号的数据报,但是有相同的目标IP地址和端口号,则被定位到相同的套接字

在这里插入图片描述
例子:
在这里插入图片描述

(3)面向连接(TCP)的多路解复用

  • TCP套接字:(四元组本地标识)
    • 源IP地址
    • 源端口号
    • 目的IP地址
    • 目的端口号
  • 解复用:接收主机用这四个值来将数据报定位到合适的套接字
  • 服务器能够在一个TCP端口上同时支持多个TCP套接字:
    • 每个套接字由其四元组标识(有不同的源IP和源PORT)
    • Web服务器对每个连接客户端有不同的套接字
      • 非持久对每个请求有不同的套接字

例子:
主机上的多进程(多个应用)
在这里插入图片描述
主机一个进程上(同一个应用)的多线程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

无论是TCP还是UDP,Soket套接字就是本地的标识,都是为了每次传输的层间信息减少,所以在各自本地创建的一种类似于关系记录表的东西,发送方传输时,将源IP、源端口(和目标IP、目标端口)信息封装(复用)成socket(一个整数,如4499),这样应用层到传输层之间的传输用整数传输代表这些信息,传输层收到这个socket自己找本地的关系去查看获取这些信息(ip,端口),根据套接字对应的IP地址和端口号等信息对报文段用头部加以封装;在接收方,传输层到应用层之间用传输层封装的socket传输,进行解复用,根据ip,端口信息将接收到的报文段发给正确的套接字(和对应的应用进程)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1284558.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

普通策略梯度算法原理及PyTorch实现【VPG】

有没有想过强化学习 (RL) 是如何工作的&#xff1f; 在本文中&#xff0c;我们将从头开始构建最简单的强化学习形式之一 —普通策略梯度&#xff08;VPG&#xff09;算法。 然后&#xff0c;我们将训练它完成著名的 CartPole 挑战 — 学习从左向右移动购物车以平衡杆子。 在此…

哈希与哈希表

哈希表的概念 哈希表又名散列表&#xff0c;官话一点讲就是&#xff1a; 散列表&#xff08;Hash table&#xff0c;也叫哈希表&#xff09;&#xff0c;是根据关键码值(Key value)而直接进行访问的数据结构。也就是说&#xff0c;它通过把关键码值映射到表中一个位置来访问记…

MySQL的多表查询

多表关系 一对多(多对一)-> 多对多-> 一对一-> 概述 概述 多表查询分类 内连接 代码演示--> -- 内连接演示 -- 1.查询每一个员工的姓名&#xff0c;及关联的部门的名称(隐式内连接实现) select emp.name, dept.name from emp,dept where emp.dept_id dept.id; …

10、外观模式(Facade Pattern,不常用)

外观模式&#xff08;Facade Pattern&#xff09;也叫作门面模式&#xff0c;通过一个门面&#xff08;Facade&#xff09;向客户端提供一个访问系统的统一接口&#xff0c;客户端无须关心和知晓系统内部各子模块&#xff08;系统&#xff09;之间的复杂关系&#xff0c;其主要…

sql面试题之“互相关注的人”(方法三)

题目&#xff1a;某社交平台有关注这个功能&#xff0c;关注的同时也会被关注。现有需求需要找出平台上哪些用户之间互相关注。 文章目录 题目如下&#xff1a;一、数据准备二、建表并导入数据1.建表2.导入数据3.数据分析和实现思路小结&#xff1a; 题目如下&#xff1a; 某社…

[RK-Linux] 移植Linux-5.10到RK3399(三)| 检查eMMC与SD卡配置

这个专题主要记录把 RK Linux-5.10 移植到 ROC-RK3399-PC Pro 的过程。 文章目录 一、eMMC二、SD 卡三、两个接口的区别一、eMMC RK3399 的 eMMC 接口如图: datasheet 介绍: 实际上,连接 eMMC 存储器用的是 SDHCI 接口。SDHCI(Secure Digital Host Controller Interface)…

【数据结构】最短路径——Floyd算法

一.问题描述 给定带权有向图G&#xff08;V&#xff0c;E&#xff09;&#xff0c;对任意顶点 V &#xff08;ij)&#xff0c;求顶点到顶点的最短路径。 转化为&#xff1a; 多源点最短路径求解问题 解决方案一&#xff1a; 每次以一个顶点为源点调用Dijksra算法。时间复杂…

香港虚拟信用卡如何办理,支持香港apple id

什么是虚拟信用卡&#xff1f; 虚拟信用卡&#xff0c;英文称之为Virtual Credit Card Numbers&#xff0c;就是指没有实体卡片&#xff0c;是基于银行卡上面的BIN码所生成的虚拟账号。通常用于进行网络交易&#xff0c;使用起来很方便&#xff0c;也很安全。 它与实体信用卡…

算法-01-递归

1-理解递归 斐波那契数列&#xff08;Fibonacci sequence&#xff09;&#xff0c;又称黄金分割数列 &#xff0c;以兔子繁殖为例子而引入&#xff0c;故又称“兔子数列”&#xff0c;其数值为&#xff1a;1、1、2、3、5、8、13、21、34……特点是 从第三个数开始&#xff0c;第…

HOST文件被挟持,无法上网,如何解决。

问题&#xff1a; 晚上开机&#xff0c;突然发现无法联网&#xff0c;提示网络异常 解决&#xff1a; 首先网络诊断&#xff0c;host文件被劫持&#xff0c;修复后&#xff0c;仍然不行。 然后测试手机热点&#xff0c;发现仍然无法联网 尝试用火绒修复&#xff0c;无果。 所有…

Linux Camera Driver(2):CIS设备注册(DTS)

一:MIPI接口 1、硬件接口 MIPI接口以rv1109和gc2053的硬件为例进行说明: 2、ISP驱动 注意配置事项: endpoint配置,必须指定data-lanes,否则无法识别为mipi类型 链接方式:sensor->csi_dphy->isp->ispp (1)sensor节点配置 根据原理图可知:mipicsi_clk0即引…

Linux系统安装Python3环境

1、默认情况下&#xff0c;Linux会自带安装Python&#xff0c;可以运行python --version命令查看&#xff0c;如图&#xff1a; 我们看到Linux中已经自带了Python2.7.5。再次运行python命令后就可以使用python命令窗口了&#xff08;CtrlD退出python命令窗口&#xff09;。 2…

STM32F407-14.3.11-01互补输出和死区插入

互补输出和死区插入 高级控制定时器&#xff08;TIM1 和 TIM8&#xff09;可以输出两路互补信号&#xff0c;并管理输出的关断与接通瞬间。 这段时间通常称为死区&#xff0c;用户必须根据与输出相连接的器件及其特性&#xff08;电平转换器的固有延迟、开关器件产生的延迟...&…

MySQL之时间戳(DateTime和TimeStamp)

MySQL之时间戳&#xff08;DateTime和TimeStamp&#xff09; 文章目录&#xff1a; MySQL之时间戳&#xff08;DateTime和TimeStamp&#xff09;一、DateTime类型二、TimeStamp类型三、DateTime和TimeStamp的区别 当插入数据时&#xff0c;需要自动记录一个时间时候&#xff0c…

llama.cpp部署(windows)

一、下载源码和模型 下载源码和模型 # 下载源码 git clone https://github.com/ggerganov/llama.cpp.git# 下载llama-7b模型 git clone https://www.modelscope.cn/skyline2006/llama-7b.git查看cmake版本&#xff1a; D:\pyworkspace\llama_cpp\llama.cpp\build>cmake --…

git 本地改动无法删除

1. 问题 记录下git遇到奇怪的问题&#xff0c;本地有些改动不知道什么原因无法删除 git stash&#xff0c; git reset --hard HEAD 等都无法生效&#xff0c;最终通过强制拉取线上解决 如下图&#xff1a; 2. 解决 git fetch --all git reset --hard origin/master执行这两…

LeedCode刷题---双指针问题

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 双指针简介 常见的双指针有两种形式&#xff0c;一种是对撞指针&#xff0c;一种是左右指针。 对撞指针:一般用于顺序结构中&…

马斯克极简5步工作法 —— 筑梦之路

马斯克的五步流程法则&#xff1a; 第一步&#xff1a;确定需求 第二步&#xff1a;极力删除零件或过程 第三步&#xff1a;简化和优化 第四步&#xff1a;加快周期时间 第五步&#xff1a;自动化特别注意&#xff1a;完成前三步之前&#xff0c;千万不要考虑加速和自动化&…

JVM类加载全过程

Java虚拟机类加载的全过程&#xff0c;即加载&#xff0c;验证&#xff0c;准备&#xff0c;解析&#xff0c;初始化 一、加载 加载 是 类加载过程中的一个阶段&#xff0c; 有以下三部分组成 1&#xff09;通过一个类的全限定名来获取定义此类的二进制流 2&#xff09;将这…

跨域问题的解决办法

1、产生跨域问题样式 前台写完&#xff0c;直接访问后台接口&#xff0c;会产生跨域的问题&#xff0c;需要配置文件去解决这个问题 从源http://localhost:8080访问http://localhost:8088/books的XMLHttpRequest已被CORS策略阻止:请求的资源上没有Access- control - allow - o…