Web前端JS如何控制 Video/Audio 视音频声道(左右声道|多声道)、视音频轨道、音频流数据

news2025/1/12 8:42:01

写在前面:

接上篇博文:Web前端JS如何获取 Video/Audio 视音频声道(左右声道|多声道)、视音频轨道、音频流数据 讲解了如何根据视频链接地址,实现在播放时实时的显示该视频的音频轨道情况,并实时的将各音频轨道数据以可视化(响度跳表)的形式展现出来。
本篇博文主要讲解:Web前端JS如何控制 Video/Audio 视音频声道(左右声道|多声道)、视音频轨道、音频流数据。如:实现各个 视音频声道(左右声道|多声道)的 独立音量大小、静音的控制。

实现效果

需要注意的是,由于我们日常中活中大部份硬件设备,如:电视机、笔记本电脑、耳机等,只有两个扬声器(简音来说,就是只有左L 和 右R 两个喇叭,就只能听到两个音频轨道的声音)如果要测试多声道的话,至少满足以下两个条件:

  • 1、播放的视音频文件必须是有多音轨的(就是两个以上的声道)
  • 2、播放的硬件设备必须是有多个扬声器(就是两个以上的喇叭)

在这里插入图片描述

关键技术

在Web浏览器中,想要获取多媒体文件的相关数据信息,需要借助对应的API来完成,比如获取视音文件的音频信息,就需要用到Web Audio API,通过该API我们可以轻松做到播放声音、获取声音数据,修改声音数据、甚至还可以制造声音。

Web Audio API 之 GainNode接口

GainNode 接口表示音量的变化。它是一个 AudioNode 音频处理模块,在输出前使用给定增益应用到输入。一个 GainNode 始终只有一个输入和一个输出,两者拥有同样数量的声道。
增益是一个无单位的值,会对所有输入声道的音频进行相应的增加(相乘)。如果进行了修改,则会立即应用新增益,从而在结果音频中产生奇怪的“咔嗒”声。为了防止这种情况发生,请不要直接更改值,而应在 AudioParam 接口上使用指数插值方法。

GainNode接口:
https://developer.mozilla.org/zh-CN/docs/Web/API/GainNode

在这里插入图片描述

了解更多API:
https://www.w3.org/TR/webaudio、https://developer.mozilla.org/zh-CN/docs/Web/API/Web_Audio_API

实例代码

1. HTML标签

由于video和audio都有音频,所以我们可以video或者audio来获取输入源,除此以外,我们还可以通过 navigator.getUserMedia API 或 Ajax请求的方式来获取输入源。

<video loop controls>
	<source src="./media/xxx.mp4" type="video/mp4" />
</video>
<audio loop controls>
	<source src="./media/xxx.mp3" type="audio/mp3" />
</audio>
2.JavaScript代码

在创建AudioContext 上下文环境对象时, 由于浏览器安全策略要求音频上下文必须在用户事件(单击、键盘按键等)中启用。这意味着,如果您尝试在没有用户事件的情况下自动播放音乐,所以在loadedmetadata元数据已加载时再执行!!

// 创建一个 AudioContext 环境
const ac = new (window.AudioContext || window.webkitAudioContext)();

// 从 video 或 audio 标签元素中拿到输入源
const audio = document.querySelector("video");
// const audio = document.querySelector("audio");

// 创建并获取输入源
const audioSource = ac.createMediaElementSource(audio);
// 音频通道数 默认值是 2,最高能取 32
const channelCount = 2 || audioSource.channelCount;
// 创建音频处理器
const processor = ac.createScriptProcessor(2048, channelCount, channelCount);
// 链接音频处理器
audioSource.connect(processor).connect(ac.destination);

// 创建通道控制器
const volumeNodeL = new GainNode(ac, { gain: 1 });
const volumeNodeR = new GainNode(ac, { gain: 1 });

// 创建通道分配器
const splitterNode = new ChannelSplitterNode(ac, {
  numberOfOutputs: channelCount,
});

splitterNode.connect(volumeNodeL, 0); 
splitterNode.connect(volumeNodeR, 1); 

// 控制链接到输入源
audioSource.connect(splitterNode);

// 创建通道合并器
const mergerNode = new ChannelMergerNode(ac, {
  numberOfInputs: channelCount,
});

volumeNodeL.connect(mergerNode, 0, 0); 
volumeNodeR.connect(mergerNode, 0, 1); 

// 通道链接到扬声器
mergerNode.connect(ac.destination);

// 监听音频处理器每次处理的样本帧
processor.onaudioprocess = (evt) => {
  //获取声轨1输入的缓冲区数据
  let input =evt.inputBuffer.getChannelData(0);
	
  //获取声轨1输出的缓冲区数据
  let output = evt.outputBuffer.getChannelData(0);
};

// 静音左L声道
LBTN.onclick = function () {
  volumeNodeL.gain.value = Number(!volumeNodeL.gain.value);
};

// 左L声道音量大小控制
VL.oninput = function () {
  // volumeNodeL.gain.value = this.value;
  volumeNodeL.gain.setValueAtTime(this.value, ac.currentTime);
  VLV.innerText = '音量:' + this.value;
}; 
3. 完整实例代码

可以通过添加本地的视频 或 音频文件,来测试对应的声道,并实时的渲染到响度跳表中,需要注意的是,音频跳表从-60开始的原因主要是,当输出音量接近满载时,THD(总谐波失真)的表现会比较差,此时产生的谐波会盖掉原本存在的背景噪音,影响到测试成绩。因此,采用-60dB的测试信号。
音频跳表值通常在-60dB到+3dB之间。在音频设备测试中,跳表值反映了设备的频率响应和增益。不同的音频设备可能会有不同的跳表值范围,根据测试标准和设备要求而定。

>>> 完整实例代码,请点击前往GitHub仓库自行提取!!
4. 完整实例效果

在这里插入图片描述

扩展封装

Npm:https://www.npmjs.com/package/mu-tooljs
GitHub:https://github.com/MuGuiLin/WebMediaAPI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1281895.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

04. 函数

目录 1、前言 2、Python中的函数 2.1、内置函数 2.2、自定义函数 2.3、函数调用 3、函数的参数 3.1、形参和实参 3.2、位置参数&#xff08;Positional Arguments&#xff09; 3.3、默认参数&#xff08;Default Arguments&#xff09;&#xff1a; 3.4、关键字参数&a…

jsp页面之间传值的一些问题总结

在http协议中一共有4种方法来完成这件事情&#xff1a; 1&#xff09;url传值 2&#xff09;表单传值 3&#xff09;Cookie方法 4&#xff09;Session方法 1、URL传值 将页面1中的值传给页面2 <body> <%String str"123";int numberInteger.parseInt(s…

Siemens-NXUG二次开发-C/C++/Python环境配置[20231204]

Siemens-NXUG二次开发-C/C/Python运行方式[20231204] 1.NX/UG C/C/Python API官方开发文档2.运行方式2.1内部模式2.2 外部模式2.3 许可证书服务器启动 3.C/C环境配置4.Python环境配置5.第三方环境配置 1.NX/UG C/C/Python API官方开发文档 西门子NX/UG Python api开发文档&…

Python----练习:使用面向对象实现报名系统开发

第一步&#xff1a;分析哪些动作是由哪些实体发出的 学生提出报名 学生提供相关资料 学生缴费 机构收费 教师分配教室 班级增加学生信息 于是&#xff0c;在整个过程中&#xff0c;一共有四个实体&#xff1a;学生、机构、教师、班级&#xff01;在现实中的一个具体的实…

【Cell Signaling + 神经递质(neurotransmitter) ; 神经肽 】

Neuroscience EndocytosisExcitatory synapse pathwayGlutamatergic synapseInflammatory PainInhibitors of axonal regenerationNeurotrophin signaling pathwaySecreted Extracellular VesiclesSynaptic vesicle cycle

shell编程系列(11)-使用grep查找文本

文章目录 前言grep的使用根据关键字查找反向查找 结语 前言 grep命令也是我们在日常使用linux&#xff0c;编写shell脚本中会用到的一个高频命令&#xff0c;grep主要是帮助我们查找我们想要的内容&#xff0c;类似于我们在office word里面的 Ctrl f 查找功能&#xff0c;但是…

力扣每日一题day26[42. 接雨水]

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] …

redis 常见问题分析

目录 redis 使用分析 一、redis 双写一致性分析 常见方式 1、先写数据库&#xff0c;后写缓存 2、先写数据库&#xff0c;后删缓存 3、先删缓存&#xff0c;再写数据库 4、延迟双删 二、redis 常见异常分析 一、缓存穿透 1、概念 2、解决方案 二、缓存雪崩 1、概念…

【BAT】关于在for中SET变量失效的问题

如题&#xff0c;在for中进行一些细化操作时发现SET变量一直不成功(尤其在读取文件时)   简单搜了下看到有个帖子(BAT求助与讨论-SET变量失效)是讨论这个问题的&#xff0c;然后有个老哥给出的解答&#xff0c;其中使用了使用CALL&#xff0c;这让我想起几天前看到的一个博客…

YouTube Premium 会员白嫖教程

前言 YouTube是美国Alphabet旗下的视频分享网站&#xff0c;也是目前全球最大的视频搜索和分享平台&#xff0c;同时允许用户上传、观看、分享及评论视频 1、点击自己的头像&#xff0c;点击购买内容与会员 2、点击免费试订 3、这里选择个人 4、点击开始试用一个月 5、添加一…

每周一算法:背包问题(三)多重背包

多重背包 有 N N N件物品和一个容量是 M M M的背包。第 i i i种物品最多有 s i s_i si​件&#xff0c;每件的体积是 v i v_i vi​&#xff0c;价值是 w i w_i wi​。 求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。 输…

基于ssm Vue的戒烟网站源码和论文

基于ssm Vue的戒烟网站源码和论文734 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 环境&#xff1a; jdk8 tomcat8.5 开发技术 ssm 摘要 随着互联网的高速发展&#xff0c;线上管理成为当代人们管理事物的重要手段之一&#xff…

C++ 系列 第五篇 C++ 算术运算符及类型转换

系列文章 C 系列 前篇 为什么学习C 及学习计划-CSDN博客 C 系列 第一篇 开发环境搭建&#xff08;WSL 方向&#xff09;-CSDN博客 C 系列 第二篇 你真的了解C吗&#xff1f;本篇带你走进C的世界-CSDN博客 C 系列 第三篇 C程序的基本结构-CSDN博客 C 系列 第四篇 C 数据类型…

nodejs微信小程序+python+PHP问卷调查系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

从存储器原理看 cpu 内存墙的本质

冯诺伊曼结构是个 cpu 和主存储器的通信结构&#xff0c;一个通信过程时延可分为处理时延&#xff0c;传播时延&#xff0c;排队时延&#xff0c;三者共同构筑了内存墙。其中处理时延最核心也最无解&#xff0c;先看它。 看个作为标准存储单元的双稳态触发器(至少教科书上就这…

2.1 Linux C 编程

一、Hello World 1、在用户根目录下创建一个C_Program&#xff0c;并在这里面创建3.1文件夹来保存Hellow World程序&#xff1b; 2、安装最新版nvim ①sudo apt-get install ninja-build gettext cmake unzip curl ②sudo apt install lua5.1 ③git clone https://github.…

深入理解Go语言GC机制

1、Go 1.3之前的标记-清除&#xff08;mark and sweep&#xff09;算法 Go 1.3之前的时候主要用的是普通的标记-清除算法&#xff0c;此算法主要由两个主要的步骤&#xff1a; 标记&#xff08;Mark phase&#xff09;清除&#xff08;Sweep phase&#xff09; 1&#xff09…

geemap学习笔记019:监督分类与精度验证(上)

前言 上一节中介绍了非监督分类&#xff0c;今天就详细介绍一下监督分类与精度验证。从这一节开始&#xff0c;我也是配置了本地的geemap&#xff0c;就可以不用colab了&#xff0c;配置也是花了挺长时间&#xff0c;但好在也是能够成功应用了&#xff0c;准备用两节的时间介绍…

【备忘干货】c/c++ (wasm)和js互相调用记录

c/c&#xff08;wasm&#xff09;和js互相调用记录 废话 :)准备工作&#xff1a;安装Emscripten初探&#xff1a;C(wasm)之hello world进一步探究&#xff1a;接口调用1.js调用c&#xff0c;一些基本类型的传递&#xff08;char*&#xff0c;int&#xff0c;float&#xff09;以…

博客访问量到达2万了!

博客访问量到达2万了&#xff01;这也发生的太快了吧&#xff0c;前两天才1万7千访问量&#xff0c;用了平台送的1500的流量券&#xff0c;粉丝从1个&#xff08;N年前的&#xff09;&#xff0c;蹭蹭的往上涨&#xff0c;这也太“假”了吧。关键我也是个菜鸟自学者&#xff0c…