Python优化利器:Numba库深度探究

news2025/1/16 13:48:07

更多资料获取

📚 个人网站:ipengtao.com


Numba 是一个用于优化 Python 代码的开源即时编译器,能够将 Python 代码转换为本机机器码,提高其执行速度。其主要特点包括:

  • 能够加速整数、浮点数等数值计算。
  • 支持直接在 CPU 和 GPU 上执行代码。
  • 使用简单的修饰器和函数调用,可用于加速循环、数学计算等任务。

安装 Numba

安装 Numba 非常简单,使用 pip 工具即可:

pip install numba

若遇到安装问题,可查阅官方文档或考虑使用 Anaconda 或虚拟环境进行安装。

Numba 的基本用法

Numba 提供 @jit 装饰器,可以直接应用在函数上,以加速其执行。比如,普通 Python 函数:

def square_array(arr):
    result = []
    for i in arr:
        result.append(i ** 2)
    return result

使用 Numba 加速:

from numba import jit

@jit
def square_array_numba(arr):
    result = []
    for i in arr:
        result.append(i ** 2)
    return result

Numba 加速 NumPy 数组计算

Numba 对 NumPy 数组计算也有显著提升。例如,纯 Python 下的矩阵乘法:

import numpy as np

def matrix_multiplication(a, b):
    return np.dot(a, b)

使用 Numba 进行优化:

@jit
def matrix_multiplication_numba(a, b):
    return np.dot(a, b)

Numba 与多线程/多核

Numba 支持 prange 函数,允许并行化循环。比如:

from numba import prange

@jit(nogil=True, parallel=True)
def parallel_square_array(arr):
    result = np.zeros_like(arr)
    for i in prange(len(arr)):
        result[i] = arr[i] ** 2
    return result

Numba 对并行计算的支持

Numba 的 @jit 装饰器和 prange 函数可以用于并行化计算,提高计算密集型任务的效率。比如并行化计算 Pi 的近似值:

from numba import njit
import numpy as np

@njit(parallel=True)
def calculate_pi(n):
    count = 0
    for i in prange(n):
        x = np.random.uniform(0, 1)
        y = np.random.uniform(0, 1)
        if x ** 2 + y ** 2 <= 1:
            count += 1
    return 4.0 * count / n

Numba 与 GPU 计算

Numba 也支持在 GPU 上执行计算。举例来说,对于 GPU 上的矩阵乘法:

from numba import cuda

@cuda.jit
def gpu_matrix_multiplication(a, b, c):
    x, y = cuda.grid(2)
    if x < c.shape[0] and y < c.shape[1]:
        tmp = 0
        for k in range(a.shape[1]):
            tmp += a[x, k] * b[k, y]
        c[x, y] = tmp

Numba 库的局限性

尽管 Numba 在提升 Python 代码性能方面非常强大,但不是所有类型的代码都适合用 Numba 进行优化。部分 Python 特性和模块可能无法与 Numba 完全兼容。

总结

Numba是一款在Python中强大的即时编译器,能够将Python代码转换为本机机器码,大幅提升执行速度。它通过使用简单的修饰器和函数,如@jit,使得优化Python代码变得相当容易。从数值计算到并行化处理,Numba在多个领域都展现出强大的性能。

其基本用法简单易懂,使用@jit装饰器即可提升普通Python函数的执行速度。特别是在数值计算方面,Numba对NumPy数组的加速效果显著,如矩阵运算。此外,它支持多线程/多核,通过prange函数实现并行化循环,提高性能。在并行计算方面,Numba提供了并行支持,能够在多核处理器上发挥其优势。

更为突出的是,Numba还支持在GPU上执行计算,为涉及大规模数据处理和计算密集型任务的应用提供了新的可能性。然而,虽然Numba在优化数值计算和提升性能方面表现优异,但对于某些Python特性和模块兼容性仍存在一定限制。

总之,Numba作为Python的优化利器,对于性能敏感型应用有着显著的提升效果。从数值计算、并行计算到GPU加速,它为Python开发者提供了一个强有力的工具,使得性能优化更加便捷和高效。


Python学习路线

在这里插入图片描述

更多资料获取

📚 个人网站:ipengtao.com

如果还想要领取更多更丰富的资料,可以点击文章下方名片,回复【优质资料】,即可获取 全方位学习资料包。

在这里插入图片描述
点击文章下方链接卡片,回复【优质资料】,可直接领取资料大礼包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1281058.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【涨薪技术】深入接口测试之Mock技术

01、为什么要用Mock 服务端与客户端约定了接口&#xff0c;但服务端还没有完成开发时&#xff0c;客户端一般由如下处理方式&#xff1a; 1、在程序中写模拟数据 程序中增加垃圾代码&#xff0c;后期还要删除&#xff0c;可能对代码造成影响模拟异步请求不方便服务端接口开发…

Ubuntu20.04安装ROS2

官方参考文章 Ubuntu (Debian) — ROS 2 Documentation: Foxy documentation curl密钥问题 sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg curl: (7) Failed to connect to raw.githubus…

Docker下安装MySQL

如果在Docker下直接拉取MySQL并运行镜像&#xff0c;由于没有指定字符编码集&#xff0c;可能会存在插入中文出现乱码的情况&#xff0c;并且当容器删除后&#xff0c;容器里面存在的数据会丢失&#xff0c;所以在运行容器时应该使用数据卷进行挂载&#xff0c;按照如下步骤操作…

31-WEB漏洞-文件操作之文件包含漏洞全解

31-WEB漏洞-文件操作之文件包含漏洞全解 一、本地包含1.1、无限制包含漏洞文件1.2、有限制包含漏洞文件1.2.1、绕过方法1.2.1.1、%00截断1.2.1.2、长度截断 二、远程包含2.1、无限制包含漏洞文件2.2、有限制包含漏洞文件 三、各种协议流提交流3.1、各协议的利用条件和方法3.1.1…

【Windows】如何实现 Windows 上面的C盘默认文件夹的完美迁移

如何实现 Windows 上面的C盘默认文件夹的完美迁移 1. 遇到的问题 在我想迁移C盘的 下载 和 视频 文件夹的时候&#xff0c;遇到了这样的问题&#xff0c;在迁移之后&#xff0c;我显卡录像的视频还是保存到了C盘默认位置里&#xff0c;以及我迁移了 下载 之后下载的盘依然是在…

XSS漏洞原理

XSS漏洞介绍&#xff1a; 跨站脚本攻击XSS(Cross Site Scripting)&#xff0c;为了不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆&#xff0c;故将跨站脚本攻击缩写为XSS。恶意攻击者往Web页面里插入恶意Script代码&#xff0c;当用户浏览该页面时&#xff0c;嵌入We…

数据结构 | 查漏补缺之ASL、

目录 ASL 情形之一&#xff1a;二分查找 线索二叉树 哈夫曼树 大根堆 邻接表&邻接矩阵 ASL 参考博文 关于ASL(平均查找长度)的简单总结_平均查找长度asl-CSDN博客 情形之一&#xff1a;二分查找 线索二叉树 参考博文 线索二叉树(线索链表遍历&#xff0c;二叉树…

【拓展】Loguru:更为优雅、简洁的Python 日志管理模块

目录 一、简单介绍 二、安装与简单使用 ​三、常见用法 3.1 显示格式 3.2 写入文件 3.3 json日志 3.4 日志绕接 3.5 并发安全 四、高级用法 4.1 接管标准日志logging 4.2 输出日志到网络服务器 4.2.1 自定义日志服务器 ​4.2.2 第三方库日志服务器 4.3 与pytest结…

LeetCode | 104. 二叉树的最大深度

LeetCode | 104. 二叉树的最大深度 OJ链接 这里需要注意的一点是每次有返回值&#xff0c;需要定义变量来保存上一次的值最后取最高的一方加1 int maxDepth(struct TreeNode* root) {if(root NULL)return NULL;int left maxDepth(root->left);int right maxDepth(root-…

MDETR 论文翻译及理解

题目Abstract1. Introduction2. Method2.1. Background2.2. MDETR2.2.1 Architecture2.2.2 Training 3. Experiments3.1. Pre-training Modulated Detection 预训练调制检测3.2. Downstream Tasks3.2.1 Few-shot transfer for long-tailed detection 4. Related work5. Conclus…

阵列信号处理---均匀线阵和均匀加权线阵

均匀线阵 均匀线性阵列(ULA&#xff1a;Uniform Linear Array)&#xff1a;有N个阵元位于z轴上且具有均匀间距d。 一般都把阵列的中心放在坐标系的原点。如下图 阵元的位置为 p z n ( n − N − 1 2 ) d &#xff0c; n 0 , 1 , … , N − 1 p_{z_n}\big(n-\frac{N-1}{2}\b…

UCore-OS实验Lab0

实验内容&#xff1a;搭建ucore-os的实验环境 实验准备内容&#xff1a;vmware虚拟机&#xff0c;ubuntu22.04镜像&#xff0c;qemu7.0.0源码 ucore代码地址 GitHub - chyyuu/os_kernel_lab at x86-32 实验步骤&#xff1a; 在vmware中安装ubuntu&#xff0c;因为我个人喜欢…

如何保持高能量

精力管理 精力管理对于平衡多项任务和保持热情至关重要。 通过自我积极反馈循环系统培养积极的内心声音。 培养仪式和习惯来控制内心的声音并保持能量。 学习语言带来正能量和宝贵的技能 保持高能量需要自我赋权和体力充电。 经常锻炼有很多好处&#xff0c;包括改善健康…

作业飞翔的鸟

首先创建一个新的Java项目命名为“飞翔的鸟”&#xff0c;并在src中创建一个包命名为“com.qiku.bird"&#xff0c;在这个包内分别创建4个类命名为“Bird”、“BirdGame”、“Column”、“Ground”&#xff0c;并向需要的图片素材导入到包内。 package com.qiku.bird;impo…

[ Linux Audio 篇 ] 音频开发入门基础知识

在短视频兴起的背景下&#xff0c;音视频开发越来越受到重视。接下来将为大家介绍音频开发者入门知识&#xff0c;帮助读者快速了解这个领域。 轻柔的音乐、程序员有节奏感的键盘声、嗡嗡的发动机、刺耳的手提钻……这些声音是如何产生的呢&#xff1f;又是如何传到我们耳中的…

基于Java SSM框架+Vue实现旅游资源网站项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架Vue实现旅游资源网站演示 摘要 本论文主要论述了如何使用JAVA语言开发一个旅游资源网站 &#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述旅游…

IP数据报首部检验和计算方法

图源&#xff1a;360百科 计算首部检验和的步骤&#xff1a;&#xff08;用二进制计算&#xff09; 将IP数据报的首部按照每16位&#xff08;2个字节&#xff09;一组进行分组&#xff0c;这样固定首部能够得到9个这样的16位二进制数&#xff1a; 版本首部长度区分服务&#…

JVM之内存区域(二)

JVM内存区域 JVM 内存区域主要分为线程私有区域【程序计数器、虚拟机栈、本地方法区】、线程共享区域【JAVA 堆、方法区】、直接内存。 线程私有数据区域生命周期与线程相同, 依赖用户线程的启动/结束 而 创建/销毁(在 Hotspot VM 内, 每个线程都与操作系统的本地线程直接映射…

Python必备工具shelve与dbm全面解析!

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 当涉及存储大量数据并且需要高效访问时&#xff0c;Python开发人员常常寻找适当的工具。shelve和dbm模块是Python中用于本地持久化存储数据的两个强大工具。它们允许开发人员以键值对的形式存储数据&#xff0c;…

vue发送请求携带token,拼接url地址下载文件

封装请求 &#xff0c;该请求为普通的get请求 该请求返回值为&#xff1a; 请求成功之后拼接URL地址下载文件 代码块 downTemplateRequest(activeKeys.value).then((res) > {let url http://47.169.168.99:18888/media/${res.data.name};var elink document.createElemen…