人工智能和网络安全:坏与好

news2025/2/26 4:09:35

人工智能似乎可以并且已经被用来帮助网络犯罪和网络攻击的各个方面。 

人工智能可以用来令人信服地模仿真人的声音。人工智能工具可以帮助诈骗者制作更好、语法正确的网络钓鱼消息(而糟糕的语法往往会暴露出漏洞),并将其翻译成多种语言,从而扩大攻击范围。

人工智能还可以探测系统的漏洞,然后有效地发起有效的攻击。

可能性是无穷无尽的,当局已经发出了可怕的警告。最近被任命为内政部首任国家网络安全协调员的在澳大利亚金融评论网络峰会上表示,未来几年网络威胁环境将发生重大变化。

今年早些时候,英国政府将人工智能的所有表现形式标记为战略风险,并将其添加到英国国家风险登记册中,该登记册概述了英国面临的最严重的风险。

人工智能被用来发起欺骗性网络攻击

使用人工智能进行语音模拟并不新鲜,但与许多其他基于人工智能的技术一样,它已经变得更加容易和广泛使用,大大增加了它被用来欺骗毫无戒心的人的可能性。

一家日本公司在中国香港的分公司经理接到一位男子的电话,他的声音是其母公司的董事,要求他转出3500万美元以支付该公司正在进行的收购,并表示将提供详细信息在一封来自一位指定律师的电子邮件中。

经理及时收到了似乎来自律师和他的主管的电子邮件,并发起了转账,但整件事是一场精心设计的网络犯罪。

早在 2018 年,自由职业者在线招聘市场 TaskRabbit 就遭受了据称由 AI 控制的大规模 DDoS 攻击。

在使用人工智能控制的僵尸网络进行 DDoS 攻击后,380 万 TaskRabbit 用户的社会保障和银行账号被泄露,据说这种攻击非常有效,以至于整个 TaskRabbit 网站都被禁用。

人工智能有助于网络安全

虽然人工智能被武器化以发动网络犯罪,但它也可以通过多种方式增强网络安全并更好地应对各种网络攻击:利用人工智能的攻击和使用更传统方法的攻击。

一旦系统遭到破坏,攻击者利用其访问权限的任何尝试都不可避免地会触发系统某些部分的异常行为。持续监控系统运行的人工智能工具可以非常有效地快速检测此类异常情况。

它们可以就其发现向人类发出警报,并且在许多情况下,它们能够在比人类执行同样操作所需的时间短得多的时间内启动适当的对策。

在这种背景下,机器学习就特别有用。机器学习 (ML) 是人工智能的一个子集,是教授算法从现有数据中学习模式以针对新数据采取适当行动的过程。

它用于网络安全,通过从各种数据源进行自适应学习来增强其知识和能力。机器学习经过训练,可以通过持续监控、识别、检测和缓解已知和未知威胁来提高单个端点和更广泛的组织网络的安全性。

这在深度学习中尤其重要,其中人工智能主动解决不断变化的安全风险,在不断变化的数字环境中保护组织。

任何在线 IT 系统都会吸收大量数据,远远超出任何人类独立分析的能力。如此大量的数据使机器学习系统能够很好地理解正常操作并检测任何异常情况。然而,这些保护机制纯粹是反应性的:人工智能寻找违规证据,然后做出响应。

人工智能有能力让安全变得主动

攻击路径分析或攻击路径建模对 IT 环境进行分析,以确定攻击者最有可能采取的最有效路径。

在大型 IT 系统中,这对于 IT 团队来说将是一项艰巨的任务,但人工智能工具可以分析每种可能的攻击路径并对所有可能的攻击场景进行建模。

澳大利亚联邦银行最近透露了其使用人工智能和机器学习来应对网络威胁的程度。

该银行网络安全总经理表示,三年内扫描威胁的在线活动数量已从每周 8000 万次增加到 2400 亿次。

该银行正在与一家人工智能公司合作,设计、构建、测试、部署和管理人工智能模型,在每一个用例中,它们的表现都明显优于被取代的系统。

我们有一个名为 MI:RIAM 的机器学习引擎,代表机器智能:实时洞察和分析机器,这是一种先进的机器学习技术,可驱动威胁情报,同时帮助其他安全解决方案进行威胁追踪。

它还可以增强安全防护能力,以识别更多威胁并防止威胁影响系统。

总之,人工智能在网络安全方面可能是一把双刃剑,既可用于恶意目的,又可增强安全措施。

虽然人工智能可以用来模仿人类的声音和制作网络钓鱼消息,但它也可以用于检测系统中的威胁和漏洞。

机器学习是人工智能的一个子集,可以通过训练来学习模式并识别异常,从而使网络安全更加主动。 

网络安全是人工智能增长最快的应用,尤其是能够实时监控攻击并做出适当响应的人工智能工具,这一点也就不足为奇了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1278693.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mongodb安装及其使用

1.Linux系统上安装Mongodb 在usr/local文件夹下创建mongo文件夹 下载mongodb包 wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-6.0.5.tgz解压mongodb tar -zxvf mongodb-linux-x86_64-rhel70-6.0.5.tgz更改文件夹的名字 mv mongodb-linux-x86_64-rh…

卷积神经网络-3D医疗影像识别

文章目录 一、前言二、前期工作1. 介绍2. 加载和预处理数据 二、构建训练和验证集三、数据增强四、数据可视化五、构建3D卷积神经网络模型六、训练模型七、可视化模型性能八、对单次 CT 扫描进行预测 一、前言 我的环境: 语言环境:Python3.6.5编译器&a…

css中的 Grid 布局

flex布局和grid布局区别 flex布局是 一维布局grid布局是二维布局 flex布局示例 grid布局示例 grid 布局初体验 体验地址 <div class"wrapper"><div class"one item">One</div><div class"two item">Two</div&…

【中文编码】利用bert-base-chinese中的Tokenizer实现中文编码嵌入

最近接触文本处理&#xff0c;查询了一些资料&#xff0c;记录一下中文文本编码的处理方法吧。   先下载模型和词表&#xff1a;bert-base-chinese镜像下载   如下图示&#xff0c;下载好的以下文件均存放在 bert-base-chinese 文件夹下    1. 词编码嵌入简介 按我通俗的…

笔记-基于CH579M模块通过网线直连电脑进行数据收发(无需网络)

刚学习&#xff0c;做个记录。 基于CH579M模块通过网线直连电脑进行数据收发(无需网络) 目录 一、工具1、CH579模块2、 网线3、电脑以及网络调试工具 二、操作步骤1、TCP/UDP等程序下载以及设置以太网IP2、网络断开3、检查以太网是否正常显示并稳定4、打开网络调试助手进行测试…

揭秘原型链:探索 JavaScript 面向对象编程的核心(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Swin Transformer实战图像分类(Windows下,无需用到Conda,亲测有效)

目录 前言 一、从官网拿到源码&#xff0c;然后配置自己缺少的环境。 针对可能遇到的错误&#xff1a; 二、数据集获取与处理 2.1 数据集下载 2.2 数据集处理 三、下载预训练权重 四、修改部分参数配置 4.1 修改config.py 4.2 修改build.py 4.3 修改units.py 4.4 修…

【程序设计】简易生产者、消费者模型

需求&#xff1a; 创建消息队列时需要指定队列的容量上限&#xff0c;队列中没有消息时&#xff0c;消费者从队列中take元素会阻塞&#xff1b;队列中的消息数量达到容量上限时&#xff0c;生产者往队列中put元素会阻塞。要保证线程安全。 组成&#xff1a; &#xff08;1&…

西南科技大学模拟电子技术实验五(集成运算放大器的应用设计)预习报告

一、计算/设计过程 设计一:用集成运放设计一个输入为0.05v,放大为-100的反相比例运算电路。 对于理想电路,反相比例运算电路的输出电压与输入电压之间的关系如下: =-100,所以 =100 若是假定R1为100k,则R2= =1k 为了减小输入级偏置电流引起的运算误差,在同相输入端…

全新MacOS固件正式版发布,打造出色的操作系统体验!

MacOS 11-14(PKG系统安装包及IPSW固件) 11.7.10/12.7.1/13.6.2/14.1.2正式版已经隆重发布&#xff01;这些固件版本适用于MacOS 11至14&#xff0c;带来了令人瞩目的升级和改进。 新版本固件通过增强系统的稳定性和性能&#xff0c;为用户创造了更加出色的操作系统体验。无论您…

VSC++: string声明的字符串这么相加

缘由https://bbs.csdn.net/topics/397667834 void string声明的字符串这么相加() {//缘由https://bbs.csdn.net/topics/397667834struct teacher { string name; };teacher t[3];string teachernameseed1 "张赵王";//把字符串放入种子中string teachernameseed2 &…

Docker从入门到实战:Docker快速部署、Dockerfile编写、容器间通信及共享数据实战、Docker-compose详解

文章目录 一、基本概念1、体系结构2、容器与镜像1&#xff09;镜像2&#xff09;容器a、容器内部结构b、容器生命周期 3、执行流程 二、常用命令docker pull 镜像名<:tags> &#xff1a;从远程仓库抽取镜像docker images&#xff1a;查看本地镜像docker run 镜像名<:t…

vue项目node-sass^4.14.1 python gyp 报错解决办法

npm i node-sass4.14.1 --sass_binary_sitehttps://npm.taobao.org/mirrors/node-sass/参考链接&#xff1a;链接

wireshark自定义协议插件开发

目录 脚本代码 报文显示 脚本代码 local NAME "test" test_proto Proto("test", "test Protocol") task_id ProtoField.uint16("test.task_id", "test id", base.DEC) cn ProtoField.uint8("test.cn", &qu…

ganache部署智能合约报错VM Exception while processing transaction: invalid opcode

这是因为编译的字节码不正确&#xff0c;ganache和remix编译时需要选择相同的evm version 如下图所示&#xff1a; remix: ganache: 确保两者都选择london或者其他evm&#xff0c;只要确保EVM一致就可以正确编译并部署&#xff0c; 不会再出现VM Exception while processing…

组合模式-C++实现

组合模式是一种结构型设计模式&#xff0c;它允许我们将对象组织成树状结构&#xff0c;并以递归的方式处理它们。该模式通过将单个对象和组合对象统一对待&#xff0c;使得客户端可以以一致的方式处理对象集合。 组合模式中有两种角色&#xff1a;组合和组件。组件就是叶子节…

三轴加速度计LIS2DW12开发(2)----基于中断信号获取加速度数据

三轴加速度计LIS2DW12开发.2--轮基于中断信号获取加速度数据 概述视频教学样品申请生成STM32CUBEMX串口配置IIC配置CS和SA0设置INT1设置串口重定向参考程序初始换管脚获取ID复位操作BDU设置开启INT1中断设置传感器的量程配置过滤器链配置电源模式设置输出数据速率中断判断加速…

常用数据预处理方法 python

常用数据预处理方法 数据清洗缺失值处理示例删除缺失值插值法填充缺失值 异常值处理示例删除异常值替换异常值 数据类型转换示例数据类型转换在数据清洗过程中非常常见 重复值处理示例处理重复值是数据清洗的重要步骤 数据转换示例 数据集成示例数据集成是将多个数据源合并为一…

基于Intel Ai Analytics Toolkit 及边缘计算的溶氧预测水产养殖监测方案

基于AI的淡水养殖水质溯源、优化系统方案 前言一、关键需求及方案概述二、方案设计预测机制LSTM 模型基于intel AI 的时序水质分析模型与分类模型优化 三、实战分析1、方案简述2、数据分析预处理特征类型处理特征分布分析 3、特征构造4、特征选择过滤法重要性排序 5.构建LSTM模…

Android drawable layer-list右上角红点,xml布局实现,Kotlin

Android drawable layer-list右上角红点&#xff0c;xml布局实现&#xff0c;Kotlin <?xml version"1.0" encoding"utf-8"?> <layer-list xmlns:android"http://schemas.android.com/apk/res/android"><itemandroid:id"id…