【数值计算方法(黄明游)】矩阵特征值与特征向量的计算(二):Jacobi 过关法(Jacobi 旋转法的改进)【理论到程序】

news2025/3/7 6:01:25

文章目录

  • 一、Jacobi 旋转法
    • 1. 基本思想
    • 2. 注意事项
  • 二、Jacobi 过关法
    • 1. 基本思想
    • 2. 注意事项
  • 三、Python实现
    • 迭代过程(调试)

  矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi 旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法,Jacobi 过关法是 Jacobi 旋转法的一种改进版本,其主要目的是减少计算工作和提高运行速度。

  本文将详细介绍Jacobi 过关法的基本原理和步骤,并给出其Python实现。

一、Jacobi 旋转法

  Jacobi 旋转法的每一次迭代中,需要选择一个非对角元素最大的位置,然后构造相应的旋转矩阵,进行相似变换,使得矩阵逐渐对角化。

  • 对称矩阵是一个实数矩阵,其转置与自身相等。
  • 对于一个方阵 A A A,如果存在标量 λ λ λ 和非零向量 v v v,使得 A v = λ v Av = λv Av=λv,那么 λ λ λ 就是 A A A 的特征值, v v v 就是对应于 λ λ λ 的特征向量。

1. 基本思想

  Jacobi 旋转法的基本思想是通过一系列的相似变换,逐步将对称矩阵对角化,使得非对角元素趋于零。这个过程中,特征值逐渐浮现在对角线上,而相应的特征向量也被逐步找到。下面是 Jacobi 旋转法的基本步骤:

  1. 选择旋转角度: 选择一个旋转角度 θ,通常使得旋转矩阵中的非对角元素为零,从而实现对角化,通常选择非对角元素中绝对值最大的那个作为旋转的目标。

  2. 构造旋转矩阵: 构造一个旋转矩阵 J,该矩阵为单位矩阵,只有对应于选择的非对角元素的位置上有两个非零元素,其余位置上为零。这两个非零元素的值由旋转角度 θ 决定,例如,对于 2x2 矩阵,旋转矩阵可以表示为:
    J = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] J = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} J=[cos(θ)sin(θ)sin(θ)cos(θ)]

  3. 相似变换: 计算相似变换矩阵 P P P,即 P T A P P^TAP PTAP,其中 A A A 是原始矩阵, P P P 是旋转矩阵,计算过程如下:

P T A P = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] T [ a 11 a 12 a 12 a 22 ] [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] P^TAP = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}^T \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} PTAP=[cos(θ)sin(θ)sin(θ)cos(θ)]T[a11a12a12a22][cos(θ)sin(θ)sin(θ)cos(θ)]

  通过矩阵相乘计算,我们可以得到 P T A P P^TAP PTAP 中的非对角元素,假设这两个元素分别位于矩阵的 (1,2) 和 (2,1) 的位置。令 a i j a_{ij} aij 为这两个元素,即 a i j = a 12 = a 21 a_{ij}= a_{12} = a_{21} aij=a12=a21

  接下来,我们希望通过选择合适的 θ \theta θ使得 a i j a_{ij} aij 变为零,从而达到对角化的目的,即 a 12 = a 21 a_{12} = a_{21} a12=a21,进一步可推导出

θ = 1 2 arctan ⁡ ( 2 ⋅ a i j a i i − a j j ) \theta = \frac{1}{2} \arctan\left(\frac{2 \cdot a_{ij}}{a_{ii} - a_{jj}}\right) θ=21arctan(aiiajj2aij)

  • a i i = a j j a_{ii}=a_{jj} aii=ajj,则使用 a r c c o t arccot arccot形式
  1. 迭代: 重复步骤 1-3,直到矩阵 A 的非对角元素都趋于零或满足一定的精度要求。

  2. 提取特征值和特征向量: 对角线上的元素即为矩阵 A 的特征值,而 P 中的列向量即为对应于这些特征值的特征向量。

2. 注意事项

  Jacobi 旋转法的优点是可以用于任意大小的对称矩阵,但其缺点是迭代次数较多,计算量较大。在实际应用中,通常会结合其他方法来提高计算效率。

二、Jacobi 过关法

  Jacobi 过关法(Jacobi’s threshold method)是 Jacobi 旋转法的一种改进版本,其主要目的是减少计算工作和提高运行速度。该方法通过动态调整阈值,并根据阈值对非对角元素进行选择性的旋转变换,以逐步对角化对称矩阵。

1. 基本思想

  1. 计算非对角元素平方和: 对于对称矩阵 A A A,计算其非对角元素平方和,表示为 u ( A ) u(A) u(A)。然后取平方根,得到 r ( A ) = u ( A ) r(A) = \sqrt{u(A)} r(A)=u(A)

  2. 设定初始阈值 θ \theta θ 预先设定一个初始阈值 θ 0 \theta_0 θ0

  3. 扫描非对角元素: 对于 a i j a_{ij} aij 其中 i ≠ j i \neq j i=j,扫描矩阵的上三角或下三角部分。

  4. 进行选择性旋转变换: 对于绝对值大于当前阈值 $\theta $的非对角元素 a i j a_{ij} aij,进行 Jacobi 旋转变换,将其旋转为零。旋转变换的具体步骤如下:

    • 选择旋转角度 ϕ \phi ϕ,通常通过 tan ⁡ ( 2 ϕ ) = 2 a i j a i i − a j j \tan(2\phi) = \frac{2a_{ij}}{a_{ii} - a_{jj}} tan(2ϕ)=aiiajj2aij计算。
    • 构造旋转矩阵 J J J,其中除了 J i i J_{ii} Jii J j j J_{jj} Jjj 外的元素都为零,而 J i j J_{ij} Jij J j i J_{ji} Jji 元素由 cos ⁡ ( ϕ ) \cos(\phi) cos(ϕ) − sin ⁡ ( ϕ ) -\sin(\phi) sin(ϕ)决定。
    • 执行相似变换 A = J T A J A = J^T A J A=JTAJ
  5. 调整阈值 θ \theta θ 当所有非对角元素的绝对值都小于当前阈值 θ \theta θ 时,缩小阈值,即 θ i + 1 = γ ⋅ θ i \theta_{i+1} = \gamma \cdot \theta_i θi+1=γθi,其中 γ \gamma γ 是一个缩小因子。

  6. 重复步骤 3-5: 重复上述步骤,直到满足某个收敛条件,例如 θ k < ϵ \theta_k < \epsilon θk<ϵ,其中 ϵ \epsilon ϵ是一个很小的正数。

2. 注意事项

  通过不断调整阈值并选择性地进行旋转变换,Jacobi 过关法逐渐减小非对角元素的绝对值,以达到更好的数值稳定性。这种方法的优点在于,通过智能地选择非对角元素进行变换,可以有效减少迭代次数,提高计算效率。

三、Python实现

import numpy as np


def jacobi_threshold_method(A, epsilon=1e-10, gamma=0.9):
    n = A.shape[0]
    theta = np.sqrt(np.sum(np.abs(np.triu(A, k=1)) ** 2))
    eigenvectors = np.eye(n)

    while theta > epsilon:
        for i in range(n):
            for j in range(i + 1, n):
                if np.abs(A[i, j]) > theta:
                    # 计算旋转角度
                    phi = 0.5 * np.arctan2(2 * A[i, j], A[i, i] - A[j, j])

                    # 构造旋转矩阵
                    J = np.eye(n)
                    J[i, i] = J[j, j] = np.cos(phi)
                    J[i, j] = -np.sin(phi)
                    J[j, i] = np.sin(phi)

                    # 执行相似变换
                    A = np.dot(np.dot(J.T, A), J)

                    # 更新特征向量
                    eigenvectors = np.dot(eigenvectors, J)

        # 缩小阈值
        theta *= gamma

    # 提取特征值和特征向量
    eigenvalues = np.diag(A)

    return eigenvalues, eigenvectors


# 示例矩阵
A = np.array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]])

# 执行 Jacobi 过关法
eigenvalues, eigenvectors = jacobi_threshold_method(A)

print("特征值:", eigenvalues)
print("特征向量:")
np.set_printoptions(precision=4, suppress=True)
print(eigenvectors)

在这里插入图片描述

迭代过程(调试)

  • 第一次:

在这里插入图片描述

在这里插入图片描述

………

  • final:
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1277390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机体系结构补充篇----静态超标量流水线及循环展开(一)

本文仅供学习&#xff0c;不作任何商业用途&#xff0c;严禁转载。部分资料取自----计算机系统结构教程(第二版)张晨曦等。部分资料来自----国科大计算机体系结构课程PPT–张科、刘珂、高婉玲 计算机体系结构----静态超标量流水线及循环展开&#xff08;一&#xff09; 摘要静…

西南科技大学(数据结构A)期末自测练习三

一、填空题&#xff08;每空1分&#xff0c;共10分&#xff09; 1、为解决计算机主机与打印机之间速度不匹配的问题&#xff0c;通常设置一个打印数据缓冲区。主机将要输出的数据依次写入缓冲区&#xff0c;打印机则依次从缓冲区中取出数据&#xff0c;则该换缓冲区的逻辑结构…

非应届生简历模板(13篇)

无论您是职场新人还是转行求职者&#xff0c;一份出色的简历都是获得心仪岗位的关键。本文为大家精选了13篇专业的非应届生简历模板&#xff0c;无论您的经验如何&#xff0c;都可以灵活参考借鉴&#xff0c;提升自己的简历质量。让简历脱颖而出&#xff0c;轻松斩获心仪职位&a…

图计算和图挖掘的概述

文章目录 IntroductionSubgraph Enumeration&#xff08;子图枚举&#xff09;Single CPUDistributed TechniqueA Practical Guide Cohesive Subgraphs&#xff08;内聚子图&#xff09;CliqueFull improvement&#xff01;&#xff01;&#xff01;↓ Network Resilience&…

【网络协议】聊聊网络ReadTimeout和ConnectTimeout

在实际的开发中&#xff0c;网络超时是一个比较常见的问题&#xff0c;比如说针对支付系统&#xff0c;超时就需要进行和三方人员进行核对订单状态&#xff0c;是否人工介入处理。 但其实在设计网络框架的时候&#xff0c;一般都有两个超时参数 连接超时参数 ConnectTimeout&am…

C++相关闲碎记录(3)

1、reference wrapper 例如声明如下的模板&#xff1a; template <typename T> void foo(T val); 如果调用使用&#xff1a; int x; foo(std::ref(x)); T变成int&&#xff0c;而使用调用 int x; foo(std::cref(x)); T变成const int&。 这个特性被C标准库用…

【算法】Rabin-Karp 算法

目录 1.概述2.代码实现3.应用 更多数据结构与算法的相关知识可以查看数据结构与算法这一专栏。 有关字符串模式匹配的其它算法&#xff1a; 【算法】Brute-Force 算法 【算法】KMP 算法 1.概述 &#xff08;1&#xff09;Rabin-Karp 算法是由 Richard M. Karp 和 Michael O. R…

基于ASP.NET MVC技术的图书管理系统的设计与实现

基于ASP.NET MVC技术的图书管理系统的设计与实现 摘要&#xff1a;图书管理系统是一套高新科学技术和图书知识信息以及传统历史文化完美结合的体现。它改变了传统图书收藏的静态书本式图书服务特征&#xff0c;实现了多媒体存取、远程网络传输、智能化检索、跨库无缝链接、创造…

景联文科技数据标注平台助力AI数据实现价值最大化

随着人工智能技术不断进步&#xff0c;应用领域不断拓宽&#xff0c;对于高质量、大规模标注数据的需求也在不断增加。 数据标注是人工智能行业的基石。机器学习需要运用海量的有效数据来做支撑&#xff0c;而这些数据就需要我们的标注员对其进行分析和处理&#xff0c;想要得到…

Linux Makefile的认识及CMake的使用

1 Makefile的作用 Makefile 指的是一个叫 Makefile 的文件,里面提前写了一些指令。每次要自动化的完成一个比较复杂项目的自动编译用的时候,就在命令行输入“make”命令Makefile使用。使用Makefile可以 “智能” 的知道: 1 哪些文件需要先进行编译。 2 当某一文件在某次mak…

第九节HarmonyOS 常用基础组件5-LoadingProgress

一、LoadingProgress LoadingProgress组件用于显示加载动效的组件&#xff0c;比如应用的登录界面&#xff0c;当我们点击登录的时候&#xff0c;显示的“正在登录”的进度条状态。LoadingProgress的使用非常简单&#xff0c;只需要设置颜色和宽高就可以了。 Entry Component …

可可爱爱的羽绒服,面料是三防的哦

分享女儿的时尚穿搭 粉粉嫩嫩的羽绒服 杜邦三防面料 柔软蓬松上身很舒适 超足充绒量 美观与实用性兼具 这款还有妈妈款哦&#xff01;&#xff01;

Innodb-ruby深入探索Innodb存储结构

达在之前已经分享过Innodb数据存储结构知识&#xff0c;但是都是基于理论原理知识理解&#xff0c;今天利用Innodb文件解析工具ruby进行探索Innodb真实的存储结构。 索引原理过程&#xff1a;【Mysql】 InnoDB引擎深入 - 数据页 | 聚集索引_innodb的聚集索引的数据插入_Surviv…

常用sql记录

备份一张表 PostgreSQL CREATE TABLE new_table AS SELECT * FROM old_table;-- 下面这个比上面好&#xff0c;这个复制表结构时&#xff0c;会把默认值、约束、注释都复制 CREATE TABLE new_table (LIKE old_table INCLUDING ALL) WITHOUT OIDS; INSERT INTO new_table SELE…

【vSphere 8 自签名 VMCA 证书】企业 CA 签名证书替换 vSphere VMCA CA 证书Ⅲ—— 颁发自签名与替换 VMCA 证书

目录 5. 使用 Microsoft 证书颁发机构颁发自签名 CA 证书链5.1 登录MADCS5.2 申请证书5.3 选择证书类型5.4 提交CR5.5 下载 Base 64 编码的证书5.6 将证书链传入VC 6. 使用 企业CA签发的 VMCA 证书 替换 vSphere 默认 VMCA 证书6.1 确认证书文件6.2 替换默认 vSphere 证书6.3 验…

【golang】为什么使用goland终端修改不了Go语言的配置环境?

问题 最近在做项目时&#xff0c;需要使用golang的交叉编译&#xff0c;在windows系统上打包一个可以在linux系统上运行的golang程序的二进制文件。 这就需要暂时修改一下golang的配置环境&#xff1a; set GOARCH amd64 set GOOS linux但是修改的时候发现在goland终端输入…

企业加密软件有哪些(公司防泄密软件)

企业加密软件是专门为企业设计的软件&#xff0c;旨在保护企业的敏感数据和信息安全。这些软件通过使用加密技术来对数据进行加密&#xff0c;使得数据在传输和存储过程中不会被未经授权的人员获取和滥用。 企业加密软件的主要功能包括数据加密、文件加密、文件夹加密、移动设备…

字营销具有成本效益的 5 个原因

任何企业的主要支出之一是他们花在营销上的钱。营销是每个企业保持对目标受众可见度并转化潜在客户的基本必要条件。品牌保持营销联盟的一种行之有效的方法是数字营销。在这个数字时代&#xff0c;对于所有希望在市场上建立品牌的企业来说&#xff0c;数字营销都是一种具有成本…

Beta冲刺随笔-DAY4-橘色肥猫

这个作业属于哪个课程软件工程A这个作业要求在哪里团队作业–站立式会议Beta冲刺作业目标记录Beta冲刺Day4团队名称橘色肥猫团队置顶集合随笔链接Beta冲刺笔记-置顶-橘色肥猫-CSDN博客 文章目录 SCRUM部分站立式会议照片成员描述 PM报告项目程序&#xff0f;模块的最新运行图片…

【halcon】裁剪

前言 目前我遇到的裁剪相关的函数都是以clip打头的函数。一共4个&#xff1a; clip_end_points_contours_xldclip_contours_xldclip_regionclip_region_rel 前面两个是对轮廓的裁剪。 后面是对区域的裁剪。 裁剪轮廓的两端 clip_end_points_contours_xld 用于实现裁剪XLD…