计算机视觉的应用21-基于含有注意力机制的CoAtNet模型的图像分类任务实现,利用pytorch搭建模型

news2025/1/5 9:14:41

大家好,我是微学AI,今天我给大家介绍一下计算机视觉的应用21-基于注意力机制CoAtNet模型的图像分类任务实现,加载数据进行模型训练。本文我们将详细介绍CoAtNet模型的原理,并通过一个基于PyTorch框架的实例,展示如何加载数据,训练含有注意力机制的CoAtNet模型,从操作上理解该模型。
在这里插入图片描述

目录

  1. CoAtNet模型简介
  2. CoAtNet模型原理
  3. CSV数据样例
  4. 数据加载与预处理
  5. 利用PyTorch框架实现CoAtNet模型
  6. 模型训练
  7. 总结

1. CoAtNet模型简介

CoAtNet(Collaborative Attention Network)是一种基于卷积神经网络(CNN)和自注意力机制(Self-Attention)相结合的网络模型。CoAtNet结合了这两种技术的优势,旨在提高模型的特征表达能力,从而在计算机视觉任务中实现更优的性能。

2. CoAtNet模型原理

CoAtNet的核心原理是将卷积神经网络和自注意力机制相结合,以下是CoAtNet模型的主要组成部分:

1.卷积层(Convolutional Layer):卷积层用于提取图像中的局部特征,能够捕捉到图像中的空间信息。

2.自注意力机制(Self-Attention Mechanism):自注意力机制用于计算输入特征之间的相互关系,可以捕捉到长距离的依赖关系。

3.协作注意力模块(Collaborative Attention Module, CAM):CAM是CoAtNet的核心模块,它将卷积层和自注意力机制相结合,使得模型在局部特征提取的同时,还能够捕捉到长距离的依赖关系。

4.残差连接(Residual Connection):为了避免梯度消失和梯度爆炸问题,CoAtNet采用了残差连接,使得模型可以更深入地学习特征。

CoAtNet是一种基于注意力机制的卷积神经网络模型。它结合了卷积操作和自注意力机制,以在图像分类任务中实现高效和准确的特征提取。

让我们用数学符号来表示CoAtNet模型。

假设输入图像为 x ∈ R H × W × C x \in \mathbb{R}^{H \times W \times C} xRH×W×C,其中 H H H W W W C C C分别表示输入图像的高度、宽度和通道数。首先,将输入图像通过一个卷积层进行特征提取,得到特征图 V ∈ R H ′ × W ′ × D V \in \mathbb{R}^{H' \times W' \times D} VRH×W×D,其中 H ′ H' H W ′ W' W D D D分别表示特征图的高度、宽度和通道数。

接下来,使用自注意力机制对特征图进行处理。假设注意力机制的输入为 Q ∈ R H ′ × W ′ × D Q \in \mathbb{R}^{H' \times W' \times D} QRH×W×D K ∈ R H ′ × W ′ × D K \in \mathbb{R}^{H' \times W' \times D} KRH×W×D V ∈ R H ′ × W ′ × D V \in \mathbb{R}^{H' \times W' \times D} VRH×W×D,其中 Q Q Q K K K V V V分别表示查询、键和值。注意力机制输出为:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中 d k d_k dk表示查询和键的维度。在CoAtNet中,我们可以使用卷积操作将 V V V转换为 Q Q Q K K K V V V

对注意力机制的输出进行处理,包括残差连接(residual connection)、层归一化(layer normalization)和前馈神经网络(feed-forward neural network)等操作。这些操作有助于提高模型的表示能力和稳定性。
在这里插入图片描述

3. CSV数据样例

为了方便演示,我们提供了以下几条CSV数据样例:

filename,label
image_001.jpg,0
image_002.jpg,1
image_003.jpg,0
image_004.jpg,1
image_005.jpg,0

4. 数据加载与预处理

首先,我们需要加载CSV文件中的数据,并对图像进行预处理。我们将使用pandas库读取CSV文件,并使用PIL库和torchvision.transforms对图像进行预处理。

import pandas as pd
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor, Normalize

# 读取CSV文件
data = pd.read_csv("books.csv")

# 定义图像预处理操作
transform = Compose([
    Resize((224, 224)),
    ToTensor(),
    Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 加载图像数据
images = []
labels = []

for index, row in data.iterrows():
    filename, label = row["filename"], row["label"]
    image = Image.open(filename)
    image = transform(image)
    images.append(image)
    labels.append(label)

images = torch.stack(images)
labels = torch.tensor(labels, dtype=torch.long)

5. 利用PyTorch框架实现CoAtNet模型

接下来,我们将使用PyTorch框架实现CoAtNet模型。首先,我们需要定义模型的基本组成部分,包括卷积层、自注意力机制和协作注意力模块。然后,我们将这些组件组合在一起,构建CoAtNet模型。

import torch
import torch.nn as nn
import torch.nn.functional as F

class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(ConvBlock, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

class SelfAttention(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SelfAttention, self).__init__()
        self.query = nn.Conv2d(in_channels, out_channels, 1)
        self.key = nn.Conv2d(in_channels, out_channels, 1)
        self.value = nn.Conv2d(in_channels, out_channels, 1)

    def forward(self, x):
        q = self.query(x)
        k = self.key(x)
        v = self.value(x)

        q = q.view(q.size(0), q.size(1), -1)
        k = k.view(k.size(0), k.size(1), -1)
        v = v.view(v.size(0), v.size(1), -1)

        attention = F.softmax(torch.bmm(q.transpose(1, 2), k), dim=-1)
        y = torch.bmm(v, attention)
        y = y.view(x.size(0), x.size(1), x.size(2), x.size(3))

        return y

class CollaborativeAttentionModule(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(CollaborativeAttentionModule, self).__init__()
        self.conv_block = ConvBlock(in_channels, out_channels, 3, 1, 1)
        self.self_attention = SelfAttention(out_channels, out_channels)

    def forward(self, x):
        x = self.conv_block(x)
        x = x + self.self_attention(x)
        return x

class CoAtNet(nn.Module):
    def __init__(self, num_classes):
        super(CoAtNet, self).__init__()
        self.stem = ConvBlock(3, 64, 7, 2, 3)
        self.pool = nn.MaxPool2d(3, 2, 1)
        self.cam1 = CollaborativeAttentionModule(64, 128)
        self.cam2 = CollaborativeAttentionModule(128, 256)
        self.cam3 = CollaborativeAttentionModule(256, 512)
        self.cam4 = CollaborativeAttentionModule(512, 1024)
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(1024, num_classes)

    def forward(self, x):
        x = self.stem(x)
        x = self.pool(x)
        x = self.cam1(x)
        x = self.cam2(x)
        x = self.cam3(x)
        x = self.cam4(x)
        x = self.avg_pool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

6. 模型训练

在定义了CoAtNet模型之后,我们需要对模型进行训练。首先,我们将定义损失函数和优化器,然后使用训练数据对模型进行训练。

from torch.optim import Adam
from torch.utils.data import DataLoader, TensorDataset

# 划分训练集和验证集
train_size = int(0.8 * len(images))
val_size = len(images) - train_size
train_images, val_images = torch.split(images, [train_size, val_size])
train_labels, val_labels = torch.split(labels, [train_size, val_size])

# 创建DataLoader
train_dataset = TensorDataset(train_images, train_labels)
val_dataset = TensorDataset(val_images, val_labels)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

# 初始化模型、损失函数和优化器
model = CoAtNet(num_classes=2)
criterion = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=1e-4)

# 训练模型
num_epochs = 10

for epoch in range(num_epochs):
    model.train()
    train_loss = 0.0
    train_correct = 0

    for images, labels in train_loader:
        # 将数据移到GPU上(如果可用)
        images = images.to(device)
        labels = labels.to(device)

        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # 计算训练集的损失和准确率
        train_loss += loss.item() * images.size(0)
        _, predicted = torch.max(outputs.data, 1)
        train_correct += (predicted == labels).sum().item()

    # 计算平均训练损失和准确率
    train_loss = train_loss / len(train_dataset)
    train_acc = train_correct / len(train_dataset)

    # 打印每个epoch的损失和准确率
    print('Epoch [{}/{}], Train Loss: {:.4f}, Train Accuracy: {:.2f}%'.format(epoch+1, num_epochs, train_loss, train_acc*100))

7.总结

CoAtNet模型结合了卷积操作和自注意力机制,以实现高效和准确的特征提取。该模型的主要步骤包括:

1.输入图像通过卷积层进行特征提取,得到特征图。

2.特征图经过自注意力机制处理,生成注意力加权的特征表示。

3.对注意力加权的特征表示进行处理,包括残差连接、层归一化和前馈神经网络等操作。

4.最终得到经过处理的特征表示,可用于图像分类等任务。

CoAtNet模型通过将卷积和注意力机制相结合,利用卷积操作提取局部特征,利用自注意力机制捕捉全局关系,从而获得更丰富的特征表示。这种结合使得CoAtNet在图像分类等任务中具有高效性和准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1277287.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MagicPipe3D地下管网三维建模数据规格

经纬管网建模系统MagicPipe3D(www.magic3d.net)本地离线参数化构建三维地下管网(含管道、接头、附属物等)模型,输出标准3DTiles、Obj等格式,支持Cesium、Unreal、Unity等引擎可视化查询。MagicPipe3D三维建…

23种设计模式之C++实践(一)

23种设计模式之C++实践 1. 简介2. 基础知识3. 设计模式(一)创建型模式1. 单例模式——确保对象的唯一性1.2 饿汉式单例模式1.3 懒汉式单例模式比较IoDH单例模式总结2. 简单工厂模式——集中式工厂的实现简单工厂模式总结3. 工厂方法模式——多态工厂的实现工厂方法模式总结4.…

java实验:数据库应用(idea+mysql+php)

设计用户注册和登录界面,实现用户注册和登录操作。 设计用户注册/登录界面;使用工具在MySQL中创建user表,包括学号、姓名、密码、专业、班级;实现注册操作:在user表中插入一条新纪录,但学号不能重复;实现登…

【分布式事务】Seata 开源的分布式事务解决方案

1. 什么是seata Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。 2. seata发展历程 阿里巴巴作为国内最早一批进行应用分…

html个人简历网页版源码

文章目录 1.个人简历1.1 简历风格1 - 纯净版1.2 简历风格2 - 蓝色版1.2 简历风格3 - 粉色心动版 源码目录结构源码下载 作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_43151418/article/details/134752070 html个人简历网页版源码,好看…

Mysql行格式(记录格式)详解

1.InnoDB行格式简介: 我们平时向表中插入数据,是以行为基本单位,这些行在磁盘上的存储方式成为行格式。在innodb中有四种行格式:Compact、Redundant、Dynamic和Compressed。 默认的行格式是Dynamic: 1.1 Compact行格式 1.1.1 …

内存免杀--

通过分析Ekko项目了解内存加密过程,这对对抗内存扫描来说很重要。 概述 Edr会扫描程序的内存空间,检测是否存在恶意软件,这种检测恶意软件的方式,应该和静态检测没什么区别,只不过一个扫描的对象是硬盘,一…

vue中使用echarts实现省市地图绘制,根据数据在地图上显示柱状图信息,增加涟漪特效动画效果

一、实现效果 使用echarts实现省市地图绘制根据数据在地图显示柱状图根据数据显示数据,涟漪效果 二、实现方法 1、安装echarts插件 npm install echarts --save2、获取省市json数据 https://datav.aliyun.com/portal/school/atlas/area_selector 通过 阿里旗下…

振南技术干货集:各大平台串口调试软件大赏(6)

注解目录 (串口的重要性不言而喻。为什么很多平台把串口称为 tty,比如 Linux、MacOS 等等,振南告诉你。) 1、各平台上的串口调试软件 1.1Windows 1.1.1 STCISP (感谢 STC 姚老板设计出 STCISP 这个软件。&#xf…

安科瑞ASCP200系列 DS 型电气防火限流式保护器 充电桩配套用限流式保护 -安科瑞 蒋静

1 概述 电气防火限流式保护器可有效克服传统断路器、空气开关和监控设备存在的短路电流大、切断短路电流 时间长、短路时产生的电弧火花大,以及使用寿命短等弊端,发生短路故障时,能以微秒级速度快速限制短 路电流以实现灭弧保护&#xff0…

Python 重要数据类型

目录 列表 序列操作 列表内置方法 列表推到式 字典 声明字典 字典基本操作 列表内置方法 字典进阶使用 字典生成式 附录 列表 在实际开发中,经常需要将一组(不只一个)数据存储起来,以便后边的代码使用。列表就是这样的…

python之logo编程

Logo标志是一种视觉符号,代表着一个品牌、企业或组织的形象。它通常采用图形、字母或字形来代表一个公司或品牌,起到对徽标拥有公司的识别和推广的作用。Logo的设计需要考虑多种因素,例如颜色搭配、字体选择和构图等,以创造出独特…

C#中GDI+图形图像绘制(直线、矩形、圆、椭圆、圆弧、扇形、多边形)

目录 一、直线 二、矩形 三、椭圆 四、圆 五、圆弧 六、扇形 七、多边形 八、示例源码 一、直线 调用Graphics类中的DrawLine()方法,结合Pen对象可以绘制直线。DrawLine()方法有以下两种构造函数。 第一种用于绘制一条连接两个Point结构的线。当参数pt1的值…

Spring---更简单的存储和读取对象

文章目录 存储Bean对象配置扫描路径添加注解存储Bean对象使用类注解为什么需要五个类注解呢?Bean命名规则 使用方法注解重命名Bean 读取Bean对象属性注入Setter注入构造方法注入注入多个相同类型的BeanAutowired vs Resource 存储Bean对象 配置扫描路径 注&#xf…

计算机网络TCP篇①

目录 一、TCP 基本信息 1.1、TCP 的头格式 1.2、什么是 TCP 1.3、什么是 TCP 连接 1.4、TCP 与 UDP 的区别 1.2、TCP 连接建立 1.2.1、TCP 三次握手的过程 1.2.2、为什么是三次握手?不是两次?四次?(这个问题真是典中典&am…

python自动化第二篇——合并ppt

简述 python合并ppt的方法有很多,但网上常说的python-pptx的方法,我用不了,这里我用了一个python-office的库。但又两个缺点,第一个生成的文档在你的用户名下的文档里,第二个是名字随机。 import office import os im…

2023_Spark_实验二十四:SparkStreaming读取Kafka数据源:使用Direct方式

SparkStreaming读取Kafka数据源:使用Direct方式 一、前提工作 安装了zookeeper 安装了Kafka 实验环境:kafka zookeeper spark 实验流程 二、实验内容 实验要求:实现的从kafka读取实现wordcount程序 启动zookeeper zk.sh start# zk.sh…

西南科技大学模拟电子技术实验三(BJT单管共射放大电路测试)预习报告

一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入法完成相关公式内容,不得贴手写图片。(注意:从抽象公式直接得出结果,不得分,页数可根据内容调整) 二、画出并填写实验指导书上…

数据结构 - 堆:TOP-K问题

问题描述 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等 对于Top-K问题,能想到的最简单直接的方式就是排序,但是&…

使用drawio图表,在团队中,做计划,设计和跟踪项目

使用drawio图表,在团队中,做计划,设计和跟踪项目 drawio是一款强大的图表绘制软件,支持在线云端版本以及windows, macOS, linux安装版。 如果想在线直接使用,则直接输入网址draw.io或者使用drawon(桌案), drawon.cn内部…