大模型fine-tune 微调

news2024/11/10 16:02:34

大模型的 Fine-tune

我们对技术的理解,要比技术本身更加重要。

正如我在《大模型时代的应用创新范式》一文中所说,大模型会成为AI时代的一项基础设施。

作为像水、电一样的基础设施,预训练大模型这样的艰巨任务,只会有少数技术实力强、财力雄厚的公司去做。

绝大多数人,是水、电的应用者。对这部分人来说,掌握如何用好大模型的技术,更加重要。

用好大模型的第一个层次,是掌握提示词工程(Prompt Engineering),《人人都需要掌握的Prompt Engineering技巧》一文中有详细的介绍,这里不再赘述。

用好大模型的第二个层次,是大模型的微调(Fine Tuning),这也是今天这篇文章的主题。

今天这篇文章,我们抛开复杂的技术细节,用最通俗、直观的语言,为大家揭开大模型微调技术的神秘面纱。

什么是大模型

开始之前,为了方便大家理解,我们先对大模型做一个直观的抽象。

本质上,现在的大模型要解决的问题,就是一个序列数据转换的问题:

输入序列 X = [x1, x2, ..., xm], 输出序列Y = [y1, y2, …, yn],X和Y之间的关系是:Y = WX。

我们所说的“大模型”这个词:“大”是指用于训练模型的参数非常多,多达千亿、万亿;而“模型”指的就是上述公式中的矩阵W。

在这里,矩阵W就是通过机器学习,得出的用来将X序列,转换成Y序列的权重参数组成的矩阵。

需要特别说明:这里为了方便理解,做了大量的简化。在实际的模型中,会有多个用于不同目的的权重参数矩阵,也还有一些其它参数。

为什么要对大模型进行微调

通常,要对大模型进行微调,有以下一些原因:

第一个原因是,因为大模型的参数量非常大,训练成本非常高,每家公司都去从头训练一个自己的大模型,这个事情的性价比非常低;

第二个原因是,Prompt Engineering的方式是一种相对来说容易上手的使用大模型的方式,但是它的缺点也非常明显。因为通常大模型的实现原理,都会对输入序列的长度有限制,Prompt Engineering 的方式会把Prompt搞得很长。

越长的Prompt,大模型的推理成本越高,因为推理成本是跟Prompt长度的平方正向相关的。

另外,Prompt太长会因超过限制而被截断,进而导致大模型的输出质量打折口,这也是一个非常严重的问题。

对于个人使用者而言,如果是解决自己日常生活、工作中的一些问题,直接用Prompt Engineering的方式,通常问题不大。

但对于对外提供服务的企业来说,要想在自己的服务中接入大模型的能力,推理成本是不得不要考虑的一个因素,微调相对来说就是一个更优的方案。

第三个原因是,Prompt Engineering的效果达不到要求,企业又有比较好的自有数据,能够通过自有数据,更好的提升大模型在特定领域的能力。这时候微调就非常适用。

第四个原因是,要在个性化的服务中使用大模型的能力,这时候针对每个用户的数据,训练一个轻量级的微调模型,就是一个不错的方案。

第五个原因是,数据安全的问题。如果数据是不能传递给第三方大模型服务的,那么搭建自己的大模型就非常必要。通常这些开源的大模型都是需要用自有数据进行微调,才能够满足业务的需求,这时候也需要对大模型进行微调。

如何对大模型进行微调

从参数规模的角度,大模型的微调分成两条技术路线:

一条是对全量的参数,进行全量的训练,这条路径叫全量微调FFT(Full Fine Tuning)。

一条是只对部分的参数进行训练,这条路径叫PEFT(Parameter-Efficient Fine Tuning)。

FFT的原理,就是用特定的数据,对大模型进行训练,将W变成W`,W`相比W ,最大的优点就是上述特定数据领域的表现会好很多。

但FFT也会带来一些问题,影响比较大的问题,主要有以下两个:

一个是训练的成本会比较高,因为微调的参数量跟预训练的是一样的多的;

一个是叫灾难性遗忘(Catastrophic Forgetting),用特定训练数据去微调可能会把这个领域的表现变好,但也可能会把原来表现好的别的领域的能力变差。

PEFT主要想解决的问题,就是FFT存在的上述两个问题,PEFT也是目前比较主流的微调方案。

从训练数据的来源、以及训练的方法的角度,大模型的微调有以下几条技术路线:

一个是监督式微调SFT(Supervised Fine Tuning),这个方案主要是用人工标注的数据,用传统机器学习中监督学习的方法,对大模型进行微调;

一个是基于人类反馈的强化学习微调RLHF(Reinforcement Learning with Human Feedback),这个方案的主要特点是把人类的反馈,通过强化学习的方式,引入到对大模型的微调中去,让大模型生成的结果,更加符合人类的一些期望;

还有一个是基于AI反馈的强化学习微调RLAIF(Reinforcement Learning with AI Feedback),这个原理大致跟RLHF类似,但是反馈的来源是AI。这里是想解决反馈系统的效率问题,因为收集人类反馈,相对来说成本会比较高、效率比较低。

不同的分类角度,只是侧重点不一样,对同一个大模型的微调,也不局限于某一个方案,可以多个方案一起。

微调的最终目的,是能够在可控成本的前提下,尽可能地提升大模型在特定领域的能力。

一些比较流行的PEFT方案

从成本和效果的角度综合考虑,PEFT是目前业界比较流行的微调方案。接下来介绍几种比较流行的PEFT微调方案。

Prompt Tuning

Prompt Tuning的出发点,是基座模型(Foundation Model)的参数不变,为每个特定任务,训练一个少量参数的小模型,在具体执行特定任务的时候按需调用。

Prompt Tuning的基本原理是在输入序列X之前,增加一些特定长度的特殊Token,以增大生成期望序列的概率。

具体来说,就是将X = [x1, x2, ..., xm]变成,X` = [x`1, x`2, ..., x`k; x1, x2, ..., xm], Y = WX`。

根据我们在《揭密Transformer:大模型背后的硬核技术》一文中介绍的大模型背后的Transformer模型,Prompt Tuning是发生在Embedding这个环节的。

如果将大模型比做一个函数:Y=f(X),那么Prompt Tuning就是在保证函数本身不变的前提下,在X前面加上了一些特定的内容,而这些内容可以影响X生成期望中Y的概率。

Prompt Tuning的具体细节,可以参见:The Power of Scale for Parameter-Efficient Prompt Tuning

[1]

Prefix Tuning

Prefix Tuning的灵感来源是,基于Prompt Engineering的实践表明,在不改变大模型的前提下,在Prompt上下文中添加适当的条件,可以引导大模型有更加出色的表现。

Prefix Tuning的出发点,跟Prompt Tuning的是类似的,只不过它们的具体实现上有一些差异。

Prompt Tuning是在Embedding环节,往输入序列X前面加特定的Token。

而Prefix Tuning是在Transformer的Encoder和Decoder的网络中都加了一些特定的前缀。

具体来说,就是将Y=WX中的W,变成W` = [Wp; W],Y=W`X。

Prefix Tuning也保证了基座模型本身是没有变的,只是在推理的过程中,按需要在W前面拼接一些参数。

Prefix Tuning的具体细节,可以参见:Prefix-Tuning: Optimizing Continuous Prompts for Generation

[2]

LoRA

LoRA是跟Prompt Tuning和Prefix Tuning完全不相同的另一条技术路线。

LoRA背后有一个假设:我们现在看到的这些大语言模型,它们都是被过度参数化的。而过度参数化的大模型背后,都有一个低维的本质模型。

通俗讲人话:大模型参数很多,但并不是所有的参数都是发挥同样作用的;大模型中有其中一部分参数,是非常重要的,是影响大模型生成结果的关键参数,这部分关键参数就是上面提到的低维的本质模型。

LoRA的基本思路,包括以下几步:

首先, 要适配特定的下游任务,要训练一个特定的模型,将Y=WX变成Y=(W+∆W)X,这里面∆W主是我们要微调得到的结果;

其次,将∆W进行低维分解∆W=AB (∆W为m * n维,A为m * r维,B为r * n维,r就是上述假设中的低维);

接下来,用特定的训练数据,训练出A和B即可得到∆W,在推理的过程中直接将∆W加到W上去,再没有额外的成本。

另外,如果要用LoRA适配不同的场景,切换也非常方便,做简单的矩阵加法即可:(W + ∆W) - ∆W + ∆W`。

关于LoRA的具体细节,可以参见LoRA: Low-Rank Adaptation of Large Language Models

[3]

QLoRA

LoRA 效果已经非常好了,可以媲美全量微调的效果了,那为什么还要有个QLoRA呢?

这里先简单介绍一下,量化(Quantization)。

量化,是一种在保证模型效果基本不降低的前提下,通过降低参数的精度,来减少模型对于计算资源的需求的方法。

量化的核心目标是降成本,降训练成本,特别是降后期的推理成本。

QLoRA就是量化版的LoRA,它是在LoRA的基础上,进行了进一步的量化,将原本用16bit表示的参数,降为用4bit来表示,可以在保证模型效果的同时,极大地降低成本。

论文中举的例子,65B的LLaMA 的微调要780GB的GPU内存;而用了QLoRA之后,只需要48GB。效果相当惊人!

关于QLoRA的具体细节,可以参见:QLoRA: Efficient Finetuning of Quantized LLMs

[4]

PEFT 的微调方法,还有很多种,限于篇幅原因,不再这里一一介绍。感兴趣的朋友,可以阅读这篇论文:Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning

[5]

Enjoy!

引用链接

[1]The Power of Scale for Parameter-Efficient Prompt Tuning:https://arxiv.org/pdf/2104.08691.pdf
[2]Prefix-Tuning: Optimizing Continuous Prompts for Generation:https://arxiv.org/pdf/2101.00190.pdf
[3]LoRA: Low-Rank Adaptation of Large Language Models:https://arxiv.org/pdf/2106.09685.pdf
[4]QLoRA: Efficient Finetuning of Quantized LLMs:https://arxiv.org/pdf/2305.14314.pdf
[5]Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning:https://arxiv.org/pdf/2303.1564

深度学习中的Fine-tune
        fine-tune中文译为“微调”,深度学习中需要在深层网络中不断进行训练更新模型的参数(权重)拟合能实现预期结果的模型。
然而在深层次的神经网络中进行训练,由于模型规模大,参数量多,因此会有以下问题:

         1. 计算较为耗时,会占用大量计算资源和时间成本;
         2. 对于较为复杂的任务,比如说对于目标识别任务,目标类别多起来的话,如果想提升模型的表现能力,需要大量的数据集。同样以目标识别任务为例子,我们需要大量标注的图像数据来对模型进行训练;

        然而还存在一个问题,仍然以目标识别任务为例,假设有一个已经训练好的模型A,其任务是识别(猫,狗,人,鸡,鸭,鹅)这6+1(背景)个类别的目标,当我们的需求发生变化,需要再增加一类目标“猪”时,如果采用重新训练一个新模型B的方式无疑会增加成本,而且造成了资源浪费——A和B的模型需求相似度高,我们为什么不可以利用到已经成熟的模型A呢?
        解决以上问题的方案就是fine-tune,微调!比如针对于以上举例,可以采用的一个微调策略是保留模型A的前若干层的结构以及它们训练后的权重,然后更改模型最后一层的softmax,调整其映射到(猫,狗,人,鸡,鸭,鹅,猪)+背景这八个类别,这样就大大减少了训练的时间和计算成本。
        其实还可以这么理解fine-tune:我们的目标是使预测损失最小化,在各个参数展开的空间内找到最优的点(或者是靠近最优点的点),如果从开始找,当然比较慢;但是从之前已经训练好的其他类似模型开始,就相当于在最优点附近的点开始,自然收敛的速度和效果会比从零训练好得多。
        当然针对不同的情况,fine-tune的方式也不尽相同,见下图:

高效微调方法一:LoRA
Github地址: https://github.com/microsoft/LoRA
论文地址: https://arxiv.org/abs/2106.09685
LoRA:LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS(2021) 基于低阶自适应的大语言模型微调方法

原理简述:基于大模型的内在低秩特性,增加旁路矩阵来模拟全参数微调; LoRA最早由微软研究院发布的一项微调技术; 简而言之,是通过修改模型结构进行微调,是一种四两拨千斤的微调方法, 是目前最通用、同时也是效果最好的微调方法之一;
概念辨析:大模型微调LoRA与通信技术LoRa,二者相差一个字母的大小 写,是完全两种不同的技术;
LoRA除了可以用于微调大语言模型(LLM)外,目前还有一个非常火爆的 应用场景:围绕diffusion models(扩散模型)进行微调,并在图片生成任务中表现惊艳;
 

通俗解读大模型微调(Fine Tuning) - 知乎

关于大模型微调,你想知道的都在这里了_大模型 微调_笑不止是表情的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1271723.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

滚珠丝杆在各种自动化设备中的作用

滚珠丝杆因其具有高精度、高刚度和长寿命等特性,成为许多设备中的重要组成部分,在许多行业中都有广泛的应用,接下来我们看看滚珠丝杆的具体应用有哪些? 1、打孔机:提供精确的导向,使打孔机的滑块能够沿固定…

数据库管理-第119期 记一次迁移和性能优化(202301130)

数据库管理-第119期 记一次迁移和性能优化(202301130) 1 迁移 之前因为DV组件没有迁移成功的那个PDB,后来想着在目标端安装DV组件迁移,结果目标端装不上,而且开了SR也没看出个所以然来。只能换一个方向,尝…

优化-查询数据接口太慢

有一个查询接口,主业务表有几万多条数据,没超过十万,由于没有使用分页,所以每次查询都要返回大几万的数据,然后问题是前端页面查询数据显示数据要转很久。 压缩响应体大小 我发现查询的时间是1秒多,但是浏…

Android中在google Map 上绘制历史路径

很多的App都会有这种需求,需要把自己的轨迹绘制在地图上来加标一段行踪,使得自己的行程展现出来,通过地图的展示,自己的行程也就一目了然了。 这里利用Google Map 把自己的行程展现出来,注意这里用到了上一章的基础&a…

关于最近Facebook的未经用户同意收集使用个人信息,

最近收到深圳市通信管理局的违法违规APP处置通知大概如下: 并且详细列举了 facebook sdk 在未经用户允许前调用的 TelephonyManager.getNetworkOperatorName(); 方法,获取运营商名称. 解决方法, 首先 在用户没有点击允许隐私条款前 不要调用任何Facebook sdk 方法,比如: Fac…

量子力学:探索微观世界的奇妙之旅

量子力学:探索微观世界的奇妙之旅 引言 在21世纪初,我们逐渐进入了一个以信息技术为主导的新时代。在这个时代,量子力学作为一门研究物质世界微观结构、粒子间相互作用以及能量与信息转换的基础科学,对我们的生活产生了深远的影响…

【Linux】:信号(一)产生

信号 一.前台进程和后台进程1.前台进程2。后台进程3.总结 二.自定义信号动作接口三.信号的产生1.键盘组合键2.kill信号进程pid3.系统调用1.kill函数2.raise函数3.abort函数 四.异常五.软件条件六.core文件 一.前台进程和后台进程 1.前台进程 一个简单的代码演示 像这种程序在…

求臻医学满分通过EMQN室间质评,检测实力再获国际权威机构认可

近日,欧洲分子基因诊断质量联盟(European Molecular Genetics Quality Network,EMQN)公布了2023年Oncogene panel 项目能力验证考核结果,求臻医学旗下北京和杭州检验实验室,使用自主研发的ChosenOne大Panel…

【目标检测】进行实时检测计数时,在摄像头窗口显示实时计数个数

这里我是用我本地训练的基于yolov8环境的竹签计数模型,在打开摄像头窗口增加了实时计数显示的代码,可以直接运行,大家可以根据此代码进行修改,其底层原理时将检测出来的目标的个数显示了出来。 该项目链接:【目标检测…

制造业如何做生产设备管理、分析生产数据?

本文将为大家讲解:1、设备管理的现状与问题;2、设备管理系统功能;3、制造业企业如何做生产设备管理、分析生产数据?4、制造业设备管理的价值。 想要管理好设备,设备档案管理、巡检、报修、保养、分析预警等问题都是必须…

探索H5的神秘世界:测试点解析

Html5 app实际上是Web app的一种,在测试过程中可以延续Web App测试的部分方法,同时兼顾手机端的一些特性即可,下面帮大家总结下Html5 app 相关测试方法! app内部H5测试点总结 1、业务逻辑 除基本功能测试外,需要关注的…

设计模式详解(三):工厂方法

目录导航 抽象工厂及其作用工厂方法的好处工厂方法的实现关系图实现步骤 工厂方法的适用场景工厂方法举例 抽象工厂及其作用 工厂方法是一种创建型设计模式。所谓创建型设计模式是说针对创建对象方面的设计模式。在面向对象的编程语言里,我们通过对象间的相互协作&…

Pytorch进阶教学——训练一个图像分类模型(GPU)

目录 1、前言 2、数据集介绍 3、获取数据 4、创建网络 5、训练模型 6、测试模型 6.1、测试整个模型准确率 6.2、测试单张图片 1、前言 编写一个可以分类蚂蚁和蜜蜂图片的模型,使用数据集对卷积神经网络进行训练。训练后的模型可以对蚂蚁或蜜蜂的图片进行…

单片机学习12——电容

电容的作用: 1)降压作用: 容抗: Xc 1/2fc 串联分压原理。2100Ω的容量,50Hz的频率,可以得到1.5uF。断电之后,需要串联一个1MΩ的电阻放电。 那是不是可以使用2100欧姆的电阻来代替电容呢&am…

单宁对葡萄酒可饮用性和陈酿潜力会有影响吗?

当在酿酒过程中葡萄酒中的单宁过量时,酿酒师可以使用白蛋白、酪蛋白和明胶等各种细化剂,这些药物可以与单宁分子结合,并将其作为沉淀物沉淀出来。随着葡萄酒的老化,单宁将形成长长的聚合链,氧气可以与单宁分子结合&…

安全技术与防火墙

目录 安全技术 防火墙 按保护范围划分: 按实现方式划分: 按网络协议划分. 数据包 四表五链 规则链 默认包括5种规则链 规则表 默认包括4个规则表 四表 查询 格式: 规则 面试题 NFS常见故障解决方法 安全技术 入侵检测系统 (Intrusion Detection Sy…

高并发架构——网页爬虫设计:如何下载千亿级网页?

Java全能学习面试指南:https://javaxiaobear.cn 在互联网早期,网络爬虫仅仅应用在搜索引擎中。随着大数据时代的到来,数据存储和计算越来越廉价和高效,越来越多的企业开始利用网络爬虫来获取外部数据。例如:获取政府公…

【23真题】快跑,考太偏了这所211!

今天分享的是23年湖南师范997的信号与系统试题及解析。 小马哥Tips: 本套试卷难度分析:22年湖南师范997考研真题,我也发布过,若有需要,戳这里自取!本套试题难度中等,题量适中,但是…

百度推送收录工具-免费的各大搜索引擎推送工具

在互联网时代,网站收录是网站建设的重要一环。百度推送工具作为一种提高网站收录速度的方式备受关注。在这个信息爆炸的时代,对于网站管理员和站长们来说,了解并使用一些百度推送工具是非常重要的。本文将重点分享百度批量域名推送工具和百度…