数据结构-二叉树(2)

news2025/1/24 11:49:53

3.4堆的应用

3.4.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

   1.升序:建大堆;

   2.降序:建小堆。

2. 利用堆删除思想来进行排序

这种写法有两个缺点:

 1、先有一个堆的数据结构
 2、空间复杂度复杂度的消耗

void HeapSort(int* a, int n)
{
	HP hp;
	HeapInit(&hp);
	for (int i = 0; i < n; i++)
	{
		HeapPush(&hp, a[i]);
	}
	
	int i = 0;
	while (!HeapEmpty(&hp))
	{
		//printf("%d ", HeapTop(&hp));
		a[i++] = HeapTop(&hp);
		HeapPop(&hp);
	}

	HeapDestroy(&hp);
}

所以我们可以稍微改进一下,使得只要有一个数组就可以进行堆排序:

假设要排一个升序:

先使用向下调整的方式建一个大堆,然后再写一个循环,当end=0时结束循环,每次进入循环先交换首尾数据,然后从头开始进行向下调整,每次end--。

void AdjustDown(int* a,int n, int parent)
{
	int child = parent * 2 + 1;
	while(child < n)
	{
		if (a[child] < a[child + 1] && child + 1 < n)
		{
			child += 1;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapSort(int* a, int n)
{
	//向下调整建堆
	for (int i = (n-1-1)/2; i >= n; i--)
	{
		AdjustDown(a,n,i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

3.4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

 void PrintTopK(const char* filename, int k)
 {
	 // 1. 建堆--用a中前k个元素建堆
	 FILE* fout = fopen(filename, "r");
	 if (fout == NULL)
	 {
		 perror("fopen fail");
		 return;
	 }

	 int* minheap = (int*)malloc(sizeof(int) * k);
	 if (minheap == NULL)
	 {
		 perror("malloc fail");
		 return;
	 }

	 for (int i = 0; i < k; i++)
	 {
		 fscanf(fout, "%d", &minheap[i]);
	 }

	 // 前k个数建小堆
	 for (int i = (k - 2) / 2; i >= 0; --i)
	 {
		 AdjustDown(minheap, k, i);
	 }


	 // 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
	 int x = 0;
	 while (fscanf(fout, "%d", &x) != EOF)
	 {
		 if (x > minheap[0])
		 {
			 // 替换你进堆
			 minheap[0] = x;
			 AdjustDown(minheap, k, 0);
		 }
	 }


	 for (int i = 0; i < k; i++)
	 {
		 printf("%d ", minheap[i]);
	 }
	 printf("\n");

	 free(minheap);
	 fclose(fout);
 }

4.二叉树链式结构的实现

4.1 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
首先我们手动创建一个链式二叉树,链接完后的二叉树大概是这个样子。

再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
 

typedef struct BinaryTreeNode
{
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
	int val;
}BTNode;
int main()
{
	BTNode* node1 = BuyListNode(1);
	BTNode* node2 = BuyListNode(2);
	BTNode* node3 = BuyListNode(3);
	BTNode* node4 = BuyListNode(4);
	BTNode* node5 = BuyListNode(5);
	BTNode* node6 = BuyListNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;
}

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

下面主要分析前序递归遍历,中序与后序图解类似:

前序,中序,后序遍历代码:

//前序 根 左子树 右子树
void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
			return;
	}
	printf("%d ", root->val);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

//中序 左子树 根 右子树
void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%d ", root->val);
	InOrder(root->right);
}

//右序 左子树 右子树 根
void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->val);
}

前序遍历递归图解:

先访问根,在访问左子树,也就是先访问1,再访问1的左子树,1的左子树的根是2,所以再访问2,2的左子树还没有访问完,所以访问2的左子树的根3,再访问3的左子树NULL,到这里3的左子树访问完毕,开始访问3的右子树NULL,到这里3的右子树也访问完毕,开始访问2的右子树NULL......以此类推

 前序遍历递归展开图:

 

 中序和后序都是一样的过程,总之就是要把对应的左子树/右子树遍历到NULL才返回上一层。

4.3二叉树节点个数

这里也要把问题转化为递归的子问题,使用一个三目操作符,差不多是一个后序遍历,如果当前节点为NULL则返回0,不是NULL则返回他的左子树和右子树的节点个数加1,也就是自己这个节点。比方说要求以下二叉树的节点个数,后序就是从3的左子树NULL开始,节点3的左右子树都为空,则节点3返回0+0+1=1,再求节点2,节点2的左子树返回了1,右子树返回0,所以节点2返回1+0+1=2,以此类推1的右子树返回的是3,所以1这个根节点的返回值是2+3+1=6.

//节点个数
int TreeSize(BTNode* root)
{
	//后序
	return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

4.4二叉树叶子节点个数

叶子节点就是没有左右子树的节点,所以进入函数先判断当前节点是否为NULL,如果是则返回0,再判断是否为叶子节点,左子树和右子树都为NULL才是叶子节点,返回1。如果两个if都未进入,说明当前节点至少有一个子节点,再写一个递归往下找,返回左右子树的全部叶子节点。

int TreeLeafSize(BTNode* root)
{
	//当前节点为空
	if (root == NULL)
		return 0;
	//左右子树为空,自己就是叶子
	if (root->left == NULL && root->right == NULL)
		return 1;
	//往下找
	return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

4.5二叉树第k层节点个数

要求第k层的节点个数,首先我们要知道一个思路,假设要求这个二叉树第3层的节点个数,那么第3层就相当于根节点1的第3层,根节点1的第三层又相当于2和4的第二层,2和4的第二层又相当于3,5,6的第一层,所以当k=1且不为空时,返回1即可。递归左右子树,每次k-1.

int TreeKLevel(BTNode* root, int k)
{
	assert(k > 0);
	if (root == NULL)
	{
		return 0;
	}
	//走到最后一层
	if (k == 1)
	{
		return 1;
	}
	//每次往下找一层
	return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}

4.6二叉树查找值为x的节点

查找节点的话,首先判断当前节点是否满足val=x,如果满足直接返回当前节点,再判断是否为空,如果既不为空也不是要查找的节点则开始往左子树开始找,这个时候要创建一个变量tail来保存返回值,使用if判断返回值是什么情况,如果是空则开始往右子树找,如果不为空则说明找到了,直接返回tail。右子树也是一样的步骤,如果左右子树都没找到说明找不到了,返回NULL。

BTNode* TreeFind(BTNode* root,int x)
{
	if (root->val == x)
		return root;
	if (root == NULL)
		return NULL;
	BTNode* tail = NULL;
	tail = TreeFind(root->left,x);
	if (tail)
		return  tail;
	tail = TreeFind(root->right,x);
	if (tail)
		return tail;
	return NULL;
}

今天的分享到这里就结束啦!感谢大家的阅读!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1268211.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

详解Python中httptools模块的使用

httptools 是一个 HTTP 解析器&#xff0c;它首先提供了一个 parse_url 函数&#xff0c;用来解析 URL。这篇文章就来和大家聊聊它的用法吧&#xff0c;感兴趣的可以了解一下 如果你用过 FastAPI 的话&#xff0c;那么你一定知道 uvicorn&#xff0c;它是一个基于 uvloop 和 h…

Python (十五) 面向对象之多继承问题

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一波电子书籍资料&#xff0c;包含《Effective Java中文版 第2版》《深入JAVA虚拟机》&#xff0c;《重构改善既有代码设计》&#xff0c;《MySQL高性能-第3版》&…

电子学会C/C++编程等级考试2022年09月(三级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:课程冲突 小 A 修了 n 门课程, 第 i 门课程是从第 ai 天一直上到第 bi 天。 定义两门课程的冲突程度为 : 有几天是这两门课程都要上的。 例如 a1=1,b1=3,a2=2,b2=4 时, 这两门课的冲突程度为 2。 现在你需要求的是这 n 门课…

Verilog 入门(一)(Verilog 简介)

文章目录 什么是 Verilog HDL&#xff1f;Verilog 主要能力模块时延数据流描述方式 什么是 Verilog HDL&#xff1f; Verilog HDL是一种硬件描述语言&#xff0c;用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和…

Windows 11的新功能不适用于所有人,但对将要使用的人来说非常酷

正如一个新的预览版本所示&#xff0c;Windows 11即将为那些使用手写笔的人添加一些智能功能&#xff0c;以及其他改进。 这是预览版22635.2776&#xff08;也称为KB5032292&#xff09;&#xff0c;已推出Beta频道&#xff0c;这是发布预览版之前的最后一个测试方法&#xff…

Oracle E-Business Suite软件 任意文件上传漏洞(CVE-2022-21587)

0x01 产品简介 Oracle E-Business Suite&#xff08;电子商务套件&#xff09;是美国甲骨文&#xff08;Oracle&#xff09;公司的一套全面集成式的全球业务管理软件。该软件提供了客户关系管理、服务管理、财务管理等功能。 0x02 漏洞概述 Oracle E-Business Suite 的 Oracle…

创建Asp.net MVC项目Ajax实现视图页面数据与后端Json传值显示

简述回顾 继上篇文章创建的mvc传值这里说明一下Json传值。在mvc框架中&#xff0c;不可避免地会遇到前台传值到后台&#xff0c;前台接收后台的值的情况&#xff08;前台指view&#xff0c;后台指controller&#xff09;&#xff0c;有时只需要从控制器中返回一个处理的结果&a…

Lombok工具包的安装和使用

目录 一.常用的注解 二.引入依赖的两种方式 1.在maven仓库中引入 2.安装插件EditStarter 三.使用举例 四.原理 Lombok是一个java库&#xff0c;它可以自动插入到编辑器和构建工具中&#xff0c;增强java的性能。不需要再写getter、setter或equals方法&#xff0c;只要有一…

使用MAT分析内存泄漏(mac)

前言 今天主要简单分享下Eclipse的Memory Analyzer在mac下的使用。 一、Mat&#xff08;简称&#xff09;干什么的&#xff1f; 就是分析java内存泄漏的工具。 二、使用步骤 1.下载 mac版的现在也分芯片&#xff0c;别下错了。我这里是M2芯片的&#xff0c;下载的Arch64的。 …

软件测试面试时问你的项目经验,你知道该怎么说吗?

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

【中间件】DAL中间件intro

中间件middleware 内容管理 intro数据访问层why use DAL中间件主流DAL中间件方案DAL浅析 本文从理论上介绍一下服务化背景下的DAL中间件的理论并浅析相关中间件 cfeng之前work的时候产品发展到分离服务不分库的阶段&#xff0c;所以根本不需要DAL中间件&#xff0c;也没有分布式…

Linux(11):Linux 账号管理与 ACL 权限设定

Linux 的账号与群组 每个登入的使用者至少都会取得两个 ID&#xff0c;一个是使用者 ID(User ID &#xff0c;简称UID)、一个是群组ID (Group ID &#xff0c;简称GID)。 Linux系统上面的用户如果需要登入主机以取得 shell 的环境来工作时&#xff0c;他需要如何进行呢? 首先…

网络通信与TCP.IP协议

网络通信与TCP.IP协议 URI 用字符串标识某一互联网资源&#xff0c;而 URL 表示资源的地点&#xff08;互联网上所处的位置&#xff09;。可见 URL 是 URI 的子集 URL (Uniform Resource Locator)&#xff0c;统一资源定位符 &#xff0c;用于描述一个网络上的资源 DNS: &#…

TCP 连接建立

1&#xff1a;TCP 三次握手过程是怎样的&#xff1f; 客户端和服务端都处于 CLOSE 状态&#xff0c;服务端主动监听某个端口&#xff0c;处于 LISTEN 状态 第一次握手&#xff1a;客户端带着序号和SYN为1&#xff0c;把第一个 SYN 报文发送给服务端&#xff0c;客户端处于 SYN-…

沈阳师范大学期末考试复习pta循环数组函数指针经典编程题汇总+代码分析

前言&#xff1a;临近期末&#xff0c;接下来给大家分享一些经典的编程题&#xff0c;方便大家复习。不一定难&#xff0c;但都是入门的好题&#xff0c;尽可能的吃透彻。因为据说期末考试的题很多来自pta上面的原题。 对于一些语言我是用c来写的&#xff0c;不妨碍理解&#…

【软件测试学习】—软件测试模型(二)

【软件测试学习】—软件测试模型&#xff08;二&#xff09; 我 | 在这里 &#x1f469;‍&#x1f9b0;&#x1f469;‍&#x1f9b0; 读书 | 长沙 ⭐计算机科学与技术 ⭐ 本科 【2024届】 &#x1f383;&#x1f383; 爱好 | 旅游、跑步、网易云、美食、摄影 &#x1f396;️…

C++ day44完全背包问题 零钱兑换Ⅱ 组合总和Ⅳ

完全背包&#xff1a;一个物品可以使用无数次&#xff0c;将01背包中倒序遍历背包变成正序遍历背包 遍历顺序&#xff1a;在完全背包中&#xff0c;对于一维dp数组来说&#xff0c;其实两个for循环嵌套顺序是无所谓的&#xff01; 先遍历物品&#xff0c;后遍历背包可以&#…

ESP32-Web-Server 实战编程-使用文件系统建立强大的 web 系统

ESP32-Web-Server 实战编程-使用文件系统建立强大的 web 系统 概述 在前述章节我们讲述了在网页端控制多个 GPIO 的案例。当程序开始变得复杂&#xff0c;让一些功能“自动起来”是一个好的选择。 在前面的示例中&#xff0c;我们需要在后端为每个前端代码的 URL 指定一个对…

SQL server界面操作链接服务器

1.打开链接服务器&#xff0c;右击连接服务器“新建链接服务器” 2.输入链接服务器名称和数据源 3.安全性中输入密码建立远程连接&#xff0c;点击确定&#xff1a; 4.打开新建的连接服务器&#xff0c;测试连接&#xff1a; 注意:链接服务器必须在局域网执行&#xff0c;不是同…

不同类型的开源许可证

不同类型的开源许可证 什么是开源许可证 最简单的解释是&#xff0c;开源许可证是计算机软件和其他产品的许可证&#xff0c;允许在定义的条款和条件下使用、修改或共享源代码、蓝图或设计。开源并不意味着该软件可以根据需要使用、复制、修改和分发。根据开源许可证的类型&a…