YOLOv8改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)

news2025/1/24 22:46:58

论文地址:官方论文地址

代码地址:该代码目前还未开源,我根据论文内容进行了复现内容在文章末尾。


一、本文介绍

本文内容给大家带来的DWRSeg中的DWR模块来改进YOLOv8中的C2f和Bottleneck模块,主要针对的是小目标检测,主要创新点可以总结如下:多尺度特征提取机制的深入研究和创新的DWR模块和SIR模块的提出这种方法使得网络能够更灵活地适应不同尺度的特征,从而更准确地识别和分割图像中的物体。 通过本文你能够了解到DWRSeg的基本原理和框架,并且能够在你自己的网络结构中进行添加(DWRSeg需要增加一定的计算量一个DWR模块大概增加0.4GFLOPs)

  专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

实验效果对比->

因为资源有限我发的文章都要做对比实验所以本次实验我只用了一百张图片检测的是火灾训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响(这次找的数据集质量好像不太好效果波动很大)。 

 

目录

一、本文介绍

二、DWRSeg的原理介绍

2.1 DWRSeg的主要思想 

2.2 多尺度特征提取机制的深入研究

2.3 创新的DWR模块和SIR模块的提出

三、DWR模块代码

3.1 DWR模块复现代码

3.2 修改了DWR模块的C2f和Bottleneck模块 

四、手把手教你添加DWR和C2f_DWR模块

4.1 DWR的添加教程

4.2 DWR的yaml文件和训练截图

4.2.1 DWR的yaml文件

4.2.2 DWR的训练过程截图 

五、DWR可添加的位置

5.1 推荐DWR可添加的位置 

5.2图示DWR可添加的位置 

六、本文总结


 

二、DWRSeg的原理介绍

2.1 DWRSeg的主要思想 

DWRSeg的主要创新点可以总结如下:

  1. 多尺度特征提取机制的深入研究:利用深度分离扩张卷积进行多尺度特征提取,并设计了一种高效的两步残差特征提取方法(区域残差化 – 语义残差化)。这种方法显著提高了实时语义分割中捕获多尺度信息的效率。

  2. 创新的DWR模块和SIR模块的提出:提出了一个新颖的DWR(扩张残差)模块和SIR(简单反向残差)模块。这些模块具有精心设计的接收场大小,分别用于网络的上层和下层。

DWRSeg网络在实时语义分割领域取得了一定的效果(从论文的结果来看下图),特别是在提高处理速度和减轻模型负担的方面。


2.2 多尺度特征提取机制的深入研究

利用深度分离扩张卷积进行多尺度特征提取。主要内容可以总结如下:

  1. 两步残差特征提取方法:该方法包括区域残差化(Region Residualization)和语义残差化(Semantic Residualization),旨在提高实时语义分割中多尺度信息捕获的效率​​。

  2. 区域残差化:这一步骤中,首先将区域特征图分成几组,然后对这些组进行不同速率的深度分离扩张卷积。这样做可以智慧地根据第二步中的接收场大小来学习特征图,以反向匹配接收场​​。

  3. 语义残差化:在这一步中,仅使用一个具有期望接收场的深度分离扩张卷积对每个简洁的区域形式特征图进行基于语义的形态学过滤。这改变了多速率深度分离扩张卷积在特征提取中的角色,从尝试获取尽可能多的复杂语义信息转变为对每个简洁表达的特征图进行简单的形态学过滤​​。

  4. 精细化的扩张率和容量设计:为了充分利用每个网络阶段可以实现的不同区域大小的特征图,需要精心设计扩张率和深度分离卷积的容量,以匹配每个网络阶段的不同接收场要求​​。

通过这种多尺度特征提取机制的深入研究和创新设计,论文提高了实时语义分割任务中多尺度信息捕获的效率(第一小节的图片)


2.3 创新的DWR模块和SIR模块的提出

提出的DWR模块和SIR模块的创新点如下:

DWR(Dilation-wise Residual)模块(本文复现的就是这个DWR模块)

  • 应用场景:DWR模块主要应用于网络的高阶段,采用设计的两步特征提取方法​​。
  • 特征提取:该模块利用两步残差特征提取方法(区域残差化 – 语义残差化),有效提高实时语义分割中多尺度信息捕获的效率。
  • 接收场大小设计:DWR模块针对网络的上层设计了精细化的接收场大小。

SIR(Simple Inverted Residual)模块

  • 应用场景:SIR模块专门为网络的低阶段设计,以满足小接收场的需求,保持高效的特征提取效率​​。
  • 结构调整
  1. 移除了多分支扩张卷积结构,仅保留第一分支,以压缩接收场。
  2. 移除了对提取效果贡献较小的3x3深度分离卷积(语义残差化),因为输入特征图的大尺寸和弱语义使得单通道卷积收集的信息太少。因此,在低阶段,单步特征提取比两步特征提取更高效。

总结:这两个模块的设计改进对于提高实时语义分割网络的性能至关重要,高效处理多尺度上下文信息的能力方面。


三、DWR模块代码

3.1 DWR模块复现代码

使用方法请看章节四

import torch
import torch.nn as nn

class Conv(nn.Module):
    # 包含BN和ReLU
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
        super(Conv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class DWR(nn.Module):
    def __init__(self, c) -> None:
        super().__init__()

        self.conv_3x3 = Conv(c, c, 3, padding=1)

        self.conv_3x3_d1 = Conv(c, c, 3, padding=1, dilation=1)
        self.conv_3x3_d3 = Conv(c, c, 3, padding=3, dilation=3)
        self.conv_3x3_d5 = Conv(c, c, 3, padding=5, dilation=5)

        self.conv_1x1 = Conv(c * 3, c, 1)

    def forward(self, x):
        x_ = self.conv_3x3(x)
        x1 = self.conv_3x3_d1(x_)
        x2 = self.conv_3x3_d3(x_)
        x3 = self.conv_3x3_d5(x_)

        x_out = torch.cat([x1, x2, x3], dim=1)
        x_out = self.conv_1x1(x_out) + x
        return x_out


3.2 修改了DWR模块的C2f和Bottleneck模块 

使用方法请看章节四


class Bottleneck_DWRSeg(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = DWRSeg_Conv(c_, c2, k[1], 1, groups=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C2f_DWRSeg(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_DWRSeg(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))


四、手把手教你添加DWR和C2f_DWR模块

4.1 DWR的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

这个卷积也可以放在C2f和Bottleneck中进行使用可以即插即用,个人觉得放在Bottleneck中效果比较好。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

 


4.2 DWR的yaml文件和训练截图

4.2.1 DWR的yaml文件

下面的配置文件我修改的地址。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9


# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_DWRSeg, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_DWRSeg, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_DWRSeg, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

 


4.2.2 DWR的训练过程截图 

下面是添加了DWR的训练截图。

下面的是将DWR机制添加到了C2f和Bottleneck。


五、DWR可添加的位置

5.1 推荐DWR可添加的位置 

DWR是一种即插即用的模块其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入DWR

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f_DWR可以帮助模型更有效地融合不同层次的特征。

  3. 检测头中的卷积:在最终的输出层前加入DWR可以使模型在做出最终预测之前,更加集中注意力于最关键的特征。

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。

5.2图示DWR可添加的位置 

六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1268121.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深圳市东星制冷机电受邀莅临2024国际生物发酵展,济南与您相约

深圳市东星制冷机电有限公司受邀莅临2024国际生物发酵展,济南3月5-7日与您相约! 展位号:1号馆A53 深圳市东星制冷机电有限公司,(东星集团)是一家专业生产制冷设备的外商独资大型集团企业,拥有30多年的生产…

虚拟机安装centos7系统后网络配置

一.桥接网络和nat网络的区别1,桥接模式(如果外部访问虚拟机,最好选这个) 通过使用物理机网卡 具有单独ip,但是需要手动配置。 在bridged模式下,VMWare虚拟出来的操作系统就像是局域网中的一台独立的主机,它…

react-route-dom 实现简单的嵌套路由

最终效果 点击 to test1 点击to test2 > to test21 点击to test2 > to test22 代码如下 path: "page",element: <父组件 />,children: [{ path: "test1", element: <Test1 /> },{path: "test2",element: <Test2 />…

软件测试测试文档的编写和阅读

在软件测试中的流程中&#xff0c;测试文档也是一个重要的流程&#xff0c;所以测试人员也需要学习测试文档的编写和阅读。 一、定义&#xff1a; 测试文档&#xff08;Testing Documentation&#xff09;记录和描述了整个测试流程&#xff0c;它是整个测试活动中非常重要的文…

BIO、NIO、selector、Netty代码Demo示例

文章目录 &#xff08;一&#xff09;BIO&#xff08;Blocking I/O 阻塞I/O&#xff09;&#xff08;二&#xff09;NIO&#xff08;Non-Blocking I/O 非阻塞I/O&#xff09;&#xff08;三&#xff09;IO多路复用--Selector&#xff08;四&#xff09;Netty &#xff08;一&am…

翻译求职简历,如何做效果好?

随着国内经济的蓬勃发展&#xff0c;众多求职者都渴望能在外企寻得一席之地。而一份精彩绝伦的外文简历&#xff0c;往往能瞬间提高求职者的成功率。但如何才能做好这份简历翻译呢&#xff1f; 其实&#xff0c;简历翻译绝非简单的中英文对照。不同国家有着各自独特的语言表达方…

【海思SS528 | VDEC】MPP媒体处理软件V5.0 | VDEC的使用总结

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

操作系统 day14(进程同步、进程互斥、互斥的代码实现、互斥的硬件实现、互斥锁)

进程同步 概念 进程的异步性体现在&#xff0c;例如&#xff1a;当有I/O操作时&#xff0c;进程需要等待I/O操作&#xff0c;而每个I/O操作又是不同的&#xff0c;所以进程没有一个固定的顺序&#xff0c;固定的时间来执行&#xff0c;而这体现了进程的异步性。 进程互斥 …

【Java】泛型的简单使用

文章目录 一、包装类1.基本数据类型和对应的包装类2.自动装箱和自动拆箱3.手动装箱和手动拆箱 二、什么是泛型三、泛型的使用四、裸类型&#xff08;Raw Type&#xff09;五、泛型是如何编译的六、泛型的上界七、泛型方法总结 一、包装类 在了解泛型之前我们先了解什么是包装类…

【Java学习笔记】75 - 算法优化入门 - 马踏棋盘问题

一、意义 1.算法是程序的灵魂&#xff0c;为什么有些程序可以在海量数据计算时&#xff0c;依然保持高速计算? 2.拿老韩实际工作经历来说&#xff0c;在Unix下开发服务器程序&#xff0c;功能是要支持上千万人同时在线&#xff0c;在上线前&#xff0c; 做内测&#xff0c;一…

FPGA设计时序约束十、others类约束之Set_Disable_Timing

目录 一、序言 二、Set Disable Timing 2.1 基本概念 2.2 设置界面 2.3 命令语法 2.4 命令示例 三、工程示例 四、参考资料 一、序言 在Vivado的时序约束窗口中&#xff0c;存在一类特殊的约束&#xff0c;划分在others目录下&#xff0c;可用于设置忽略或修改默认的时…

一文学会Aiohttp

一、什么是aiohttp库 aiohttp库官网&#xff1a;https://docs.aiohttp.org/en/stable/ aiohttp是一个Python的HTTP客户端/服务器框架&#xff0c;它基于asyncio库实现异步编程模型&#xff0c;可以支持高性能和高并发的HTTP通信。aiohttp用于编写异步的Web服务器、Web应用程序…

【hacker送书第5期】SQL Server从入门到精通(第5版)

第5期图书推荐 内容简介作者简介图书目录参与方式 内容简介 SQL Server从入门到精通&#xff08;第5版&#xff09;》从初学者角度出发&#xff0c;通过通俗易懂的语言、丰富多彩的实例&#xff0c;详细介绍了SQL Server开发所必需的各方面技术。全书分为4篇共19章&#xff0c;…

Linux下文件操作函数

一.常见IO函数 fopen fclose fread fwrite fseek fflush fopen 运行过程 &#xff1a;打开文件 写入数据 数据写到缓冲区 关闭文件后 将数据刷新入磁盘 1.fopen 返回文件类型的结构体的指针 包括三部分 1).文件描述符&#xff08;整形值 索引到磁盘文件&#xff09;…

【重磅合作】九章云极DataCanvas公司与生态伙伴强强联手,构建人工智能强生态!

11月21日&#xff0c;在「筑基赋能 智向未来」九章云极DataCanvas大模型系列成果发布会上&#xff0c;九章云极DataCanvas公司与人工智能产业链上下游合作伙伴广东民营投资股份有限公司&#xff08;以下简称“粤民投”&#xff09;、西藏赛富合银投资有限公司&#xff08;以下简…

网络入门---网络编程预备知识

目录标题 ifconfigip地址和mac地址的区别端口号pid和端口号UDP和TCP的初步了解网络字节序socket套接字 ifconfig 通过指令ifconfig便可以查看到两个网络接口&#xff1a; 我们当前使用的是一个linux服务器并是一个终端设备&#xff0c;所以他只需要一个接口用来入网即可&…

重排链表,剑指offerII 26,力扣 120

目录 力扣题目地址&#xff1a; 题目&#xff1a; 那我们直接看题解吧&#xff1a; 解题方法&#xff1a; 难度分析&#xff1a; 审题目事例提示&#xff1a; 解题分析&#xff1a; 解题思路&#xff1a; 解题补充&#xff1a; 力扣题目地址&#xff1a; 143. 重排链表 - 力扣&…

树与二叉树堆:堆的意义

目录 堆的意义&#xff1a; 第一是堆的排序&#xff0c;第二是堆的top k 排行问题 堆的 top k 排行问题&#xff1a; 面对大量数据的top k 问题&#xff1a; 堆排序的实现&#xff1a;——以升序为例 方法一 交换首尾&#xff1a; 建立大堆&#xff1a; 根结点尾结点的…

Python之数据可视化

文章目录 一、1、matplotlib简单应用1.1、绘制带有中文标签和图例的图1.2、 绘制散点图1.3、绘制饼状图1.4、多个图形一起显示 一、 1、matplotlib简单应用 matplotlib模块依赖于numpy模块和tkinter模块&#xff0c;可以绘制多种形式的图形&#xff0c;包括线图、直方图、饼状…

理解DALL-E 2

1.简介 DALL-E 2的效果想必大家都已经很清楚了&#xff0c;效果是非常惊人的&#xff0c;该篇文章就是讲一下DALL-E 2的原理是什么。 2.方法 DALL-E 2的原理不难理解&#xff0c;前提是你知道CLIP。简单来说&#xff0c;CLIP是一个由文本和图片多模态训练的一个zero-shot模型…