【数据挖掘】国科大刘莹老师数据挖掘课程作业 —— 第三次作业

news2025/1/26 15:37:56

Written Part

1. 基于表 1 1 1 回答下列问题(min_sup=40%, min_conf=75%):

Transaction IDItems Bought
0001{a, d, e}
0024{a, b, c, e}
0012{a, b, d, e}
0031{a, c, d, e}
0015{b, c, e}
0022{b, d, e}
0029{c, d}
0040{a, b, c}
0033{a, d, e}
0038{a, b, e}

表 1    数据集

  • 使用 Apriori 算法确定全部的频繁项集。

    Apriori 算法执行过程如图 1 1 1 所示。

    图 1    Apriori

    可以看出,频繁项集有 {a},{b},{c},{d},{e},{ab},{ad},{ae},{be},{de},{ade}。

  • 计算关联规则的置信度,并判断这些置信度是否具有对称性。
    C o n f i d e n c e ( a ⇒ d e ) = 4 7 C o n f i d e n c e ( d ⇒ a e ) = 4 6 C o n f i d e n c e ( e ⇒ a d ) = 4 8 C o n f i d e n c e ( a d ⇒ e ) = 4 4 C o n f i d e n c e ( a e ⇒ d ) = 4 6 C o n f i d e n c e ( d e ⇒ a ) = 4 5 {\rm Confidence}(a\Rightarrow de) = \frac{4}{7} \\ {\rm Confidence}(d\Rightarrow ae) = \frac{4}{6} \\ {\rm Confidence}(e\Rightarrow ad) = \frac{4}{8} \\ {\rm Confidence}(ad\Rightarrow e) = \frac{4}{4} \\ {\rm Confidence}(ae\Rightarrow d) = \frac{4}{6} \\ {\rm Confidence}(de\Rightarrow a) = \frac{4}{5} Confidence(ade)=74Confidence(dae)=64Confidence(ead)=84Confidence(ade)=44Confidence(aed)=64Confidence(dea)=54
    显然,不满足对称关系。

  • 确定强关联规则。

    其中只有 C o n f i d e n c e ( a d ⇒ e ) ≥ {\rm Confidence}(ad\Rightarrow e)\ge Confidence(ade) min_conf, C o n f i d e n c e ( d e ⇒ a ) ≥ {\rm Confidence}(de\Rightarrow a)\ge Confidence(dea) min_conf,所以强关联规则为
    a d ⇒ e          [ 0.4 , 1.0 ] d e ⇒ a          [ 0.4 , 0.8 ] ad\Rightarrow e \;\;\;\; [0.4, 1.0]\\ de \Rightarrow a \;\;\;\; [0.4,0.8] ade[0.4,1.0]dea[0.4,0.8]

2. 基于表 1 1 1 回答下列问题(min_sup=40%):

  • 使用 FP-Growth 算法确定频繁项集、FP 树和条件模式基。

    根据 C1,可以统计出 F - l i s t = e , a , b , d , c {\rm F\text-list} = e, a, b, d, c F-list=e,a,b,d,c。根据 F - l i s t \rm F\text-list F-list,对表 1 1 1 进行筛选、排序,得到表 2 2 2

    Transaction IDItems Bought
    0001{e, a, d}
    0024{e, a, b, c}
    0012{e, a, b, d}
    0031{e, a, d, c}
    0015{e, b, c}
    0022{e, b, d}
    0029{d, c}
    0040{a, b, c}
    0033{e, a, d}
    0038{e, a, b}

表 2    经过过滤、排序后的数据

​ 构建的 FP 树如图 2 2 2 所示。

图 2    FP 树

从出现频次少的 item 开始确定条件模式基、条件 FP 树和频繁项集。

c 的条件模式基为 {{e,a,b:1}, {e,a,d:1}, {e,b:1}, {d:1}, {a,b:1}},统计基于其条件模式基的候选一项集:{a:3,b:3,e:3,d:2}。由于均小于最小支持度,所以不存在(条件)频繁一项集,无法构建条件 FP 树,也没法构建频繁二项集。

d 的条件模式基为 {{e,a,b:1}, {e,a:3}, {e,b:1}},统计候选一项集:{e:5, a:4, b:2}。只有 b 小于最小支持度,所以频繁一项集为 {e:5, a:4}。现在,以 d 的条件模式基作为”数据集“,执行构建 FP 树的过程,即按照频次对一项集排序,去掉数据集中每条数据的非频繁项并排序,最后基于处理后的数据集构建 FP 树,该树为 d 的条件 FP 树,如图 3 3 3 所示。

图 3    d-conditional FP tree

由于该 FP 树只有一条路径,因此无需递归建树,根据 d 对应的条件 FP 树统计的频繁项集为 {ead:4, ed:5, ad:4}。在表 2 2 2 所示的原始数据集中进行验证,结果正确。

b 的条件模式基为 {{e,a:3}, {e:2}, {a:1}},频繁一项集为 {e:5, a:4}。条件 FP 树如图 4 4 4 所示。

图 4    b-conditional FP tree

统计频繁二项集为 {eb:5, ab:4}。由于不止一条路径,所以统计频繁三项集需要递归建树。建立 ba 条件 FP 树,需要从图 4 4 4 中确定 a 的条件模式基 {{e:3}},以该条件模式基为”数据集“,统计频繁一项集发现为空,所以无法建立 ba 条件 FP 树,故无法生成频繁三项集。再建立 be 条件 FP 树,显然,其条件模式基为空,建树与生成频繁项集也无从谈起。

a 的条件模式基为 {{e:6}},频繁一项集为 {e:6}。条件 FP 树如图 5 5 5 所示,由此确定频繁项集为 {ea:6}。

图 5    a-conditional FP tree

e 的条件模式基为空,所以不考虑。

综上所述,根据 FP-Growth 算法确定的频繁项集为 {a},{b},{c},{d},{e},{ab},{ad},{ae},{be},{de},{ade}。与 Apriori 算法结果一致。

  • 对比 FP-Growth 和 Apriori 的效率。

    FP-Growth 算法只需要对数据集遍历两次,所以速度更快。FP 树将集合按照支持度降序排序,不同路径如果有相同前缀路径共用存储空间,使得数据得到了压缩。相比于 Apriori,FP 树第二次遍历会存储很多中间过程的值,会占用很多内存。

3. 使用 AGNES 算法将表 4 4 4 所示的十个点聚类成两类。

IDNamePos
0A1(4,2,5)
1A2(10,5,2)
2A3(5,8,7)
3B1(1,1,1)
4B2(2,3,2)
5B3(3,6,9)
6C1(11,9,2)
7C2(1,4,6)
8C3(9,1,7)
9C4(5,6,7)

表 4    十点位置

① 合并 A3 和 C4,二者的欧式距离为 2 2 2,记簇为 α \alpha α

② 合并 B1 和 B2,二者距离为 6 \sqrt 6 6 ,记簇为 β \beta β

③ 合并 B3 和 α \alpha α,二者距离由 B3 与 α \alpha α 中最近点的距离定义,即 B3 与 C4,距离为 8 \sqrt 8 8 ,记簇为 α \alpha α

④ 合并 β \beta β、A1 和 C2, β \beta β 与 A1 的距离定义为 C2 与 A1 的距离,即 14 \sqrt {14} 14 ,B2 与 A1 的距离也为 14 \sqrt{ 14} 14 ,所以三者合并,记簇为 β \beta β

⑤ 合并 A2 和 C1,二者距离为 17 \sqrt {17} 17 。另外,合并 α \alpha α β \beta β,二者距离由 B3 和 C2 决定,也为 17 \sqrt{17} 17 。分别记簇为 γ \gamma γ α \alpha α

⑥ 合并 C3 和 α \alpha α,二者距离由 C3 和 A1 决定,即 30 \sqrt{30} 30 ,记簇为 α \alpha α

此时只剩两个簇, α \alpha α γ \gamma γ,分别为 {A2, C1} 和 {A1, A3, B1, B2, B3, C2, C3, C4}。

通过程序代码验证,如图 6 6 6 所示。

图 6    分类前(左)、分类过程(中)和分类后(右)

对应代码如下:

#步骤1:创建数据
import matplotlib.pyplot as plt
import numpy as np
X = np.array([[4,2,5], [10,5,2], [5,8,7], [1,1,1], [2,3,2], [3,6,9], [11,9,2], [1,4,6], [9,1,7], [5,6,7]])
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c='b')
plt.show()
#步骤 2:调用函数实现层次聚类
from scipy.cluster.hierarchy import linkage
Z = linkage(X, method='single', metric='euclidean')
#步骤 3:画出树形图
from scipy.cluster.hierarchy import dendrogram
plt.figure(figsize=(8, 5))
dendrogram(Z,p=1, leaf_font_size=10)
plt.show()
#步骤 4:获取聚类结果
from scipy.cluster.hierarchy import fcluster
# 根据聚类数目返回聚类结果
k = 2
labels_2 = fcluster(Z, t=k, criterion='maxclust')
# 聚类的结果可视化,相同的类的样本点用同一种颜色表示
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=labels_2, cmap='prism')
plt.show()

4. 根据表 5 5 5 所示的 User-Product rating 矩阵回答下列问题:

Product 1Product 2Product 3Product 4
User 11153
User 23?54
User 31311
User 44321
User 52224

表 5    User-Product

  • 使用余弦相似度计算与 User 2 最相似的三个 User。
    s i m ( 1 , 2 ) = 1 × 3 + 5 × 5 + 3 × 4 35 50 ≈ 0.956 s i m ( 3 , 2 ) = 1 × 3 + 1 × 5 + 1 × 4 3 50 ≈ 0.980 s i m ( 4 , 2 ) = 4 × 3 + 2 × 5 + 1 × 4 21 50 ≈ 0.802 s i m ( 5 , 2 ) = 2 × 3 + 2 × 5 + 4 × 4 24 50 ≈ 0.924 \begin{align} {\rm sim}(1,2) = \frac{1\times 3 + 5\times 5 + 3\times 4}{\sqrt{35} \sqrt{50}} ≈ 0.956 \\ {\rm sim}(3,2) = \frac{1\times 3 + 1\times 5 + 1\times 4}{\sqrt{3} \sqrt{50}} ≈ 0.980 \\ {\rm sim}(4,2) = \frac{4\times 3 + 2\times 5 + 1\times 4}{\sqrt{21} \sqrt{50}} ≈ 0.802 \\ {\rm sim}(5,2) = \frac{2\times 3 + 2\times 5 + 4\times 4}{\sqrt{24} \sqrt{50}} ≈ 0.924 \\ \end{align} sim(1,2)=35 50 1×3+5×5+3×40.956sim(3,2)=3 50 1×3+1×5+1×40.980sim(4,2)=21 50 4×3+2×5+1×40.802sim(5,2)=24 50 2×3+2×5+4×40.924
    显然,User 2 和 User 1、User 3、User 5 最相似。

  • 使用与 User 2 最相似的三个 User 预测 User 2 的 Product 2。
    r ˉ U s e r    1 = 1 4 ( 1 + 1 + 5 + 3 ) = 5 2 r ˉ U s e r    2 = 1 3 ( 3 + 5 + 3 ) = 4 r ˉ U s e r    3 = 1 4 ( 1 + 3 + 1 + 1 ) = 3 2 r ˉ U s e r    5 = 1 4 ( 2 + 2 + 2 + 4 ) = 5 2 \begin{align} \bar r_{\rm User \;1} &= \frac{1}{4}(1+1+5+3) = \frac{5}{2} \\ \bar r_{\rm User \;2} &= \frac{1}{3} (3+5+3) = 4 \\ \bar r_{\rm User \;3} &= \frac{1}{4} (1+3+1+1) = \frac{3}{2} \\ \bar r_{\rm User \;5} &= \frac{1}{4}(2+2+2+4) = \frac{5}{2} \end{align} rˉUser1rˉUser2rˉUser3rˉUser5=41(1+1+5+3)=25=31(3+5+3)=4=41(1+3+1+1)=23=41(2+2+2+4)=25

    r U s e r    2 , P r o d u c t    2 = r ˉ U s e r    2 + s i m ( 1 , 2 ) ( r U s e r    1 , P r o d u c t    2 − r ˉ U s e r    1 ) + s i m ( 3 , 2 ) ( r U s e r    3 , P r o d u c t    2 − r ˉ U s e r    3 ) + s i m ( 5 , 2 ) ( r U s e r    5 , P r o d u c t    2 − r ˉ U s e r    5 ) s i m ( 1 , 2 ) + s i m ( 3 , 2 ) + s i m ( 5 , 2 ) ≈ 3.851 \begin{align} r_{\rm User \;2, Product \;2} &= \bar r_{\rm User \;2} + \frac{{{\rm sim(1,2)}(r_{\rm User\; 1, Product\;2}- \bar r_{\rm User\; 1}) } + {{\rm sim(3,2)}(r_{\rm User\; 3, Product\;2}- \bar r_{\rm User\; 3})} + {{\rm sim(5,2)}(r_{\rm User\; 5, Product\;2}- \bar r_{\rm User\; 5}) }}{\rm sim(1,2) + sim(3,2)+ sim(5,2)} \\ &≈ 3.851 \end{align} rUser2,Product2=rˉUser2+sim(1,2)+sim(3,2)+sim(5,2)sim(1,2)(rUser1,Product2rˉUser1)+sim(3,2)(rUser3,Product2rˉUser3)+sim(5,2)(rUser5,Product2rˉUser5)3.851

Lab Part

Churn Management

churn_training.txt 文件包括 2000 条数据,churn_validation.txt 包括 1033 条数据。

  • 采用决策树模型,设置 minimum records per child branch 为 40,pruning severity 为 70。

    图 7    决策树

  • 采用神经网络模型,默认设置。

    图 8    神经网络

  • 采用逻辑回归模型,默认设置。

    图 9    逻辑回归

  • 对比不同参数设置下的决策树模型、神经网络模型和逻辑回归模型。

图 10    不同参数下决策树的效果

图 11    不同参数下决策树的效果(续)

图 12    不同参数下神经网络的效果

图 13    不同参数下逻辑回归的效果

Market Basket Analysis

采用 Apriori 算法,设置 Minimum antecedent support 为 7%,Minimum confidence 为 45%,Maximum number of antecedents 为 4。

  • 确定产生的关联规则。

    全部关联规则如图 14 14 14 所示。

    图 14    全部关联规则

  • 分别按照提升度(lift)、支持度(support)和置信度(confidence)对关联规则进行排序,选择前五个非冗余的关联规则。

    前五个关联规则如表 6 6 6 所示。

    orderliftsupportconfidence
    1tomato souce → pastapasta → milkbiscuits, pasta → milk
    2coffee, milk → pastawater → milkwater, pasta → milk
    3biscuits, pasta → milkbiscuits → milkjuices → milk
    4water, pasta → milkbrioches → milktomato souce → pasta
    5juices → milkyoghurt → milkyoghurt → milk

    表 6    前五关联规则

    比较符合常识,比如买番茄酱的购物者很可能意大利面;买意大利面的购物者很可能因为口渴买牛奶;买水或者酸奶等饮品的购物者常常会一起买上牛奶。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1268042.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

E. Kolya and Movie Theatre

https://codeforces.com/contest/1862/problem/E 容易发现就是维护一个长度至多为m的序列和 减去 i*d(i为最后选择看电影的是哪一天) 一开始没有把第0天的p是0用上,没想出来 维护非负序列和这里可以用一个set,有点类似于滑动窗口&…

vuepress-----6、时间更新

# 6、时间更新 基于Git提交时间修改文字时间格式 moment # 最后更新时间 # 时间格式修改 下载库文件 yarn add momentconst moment require(moment); moment.locale(zh-cn)module.exports {themeConfig: {lastUpdated: 更新时间,},plugins: [[vuepress/last-updated,{trans…

java开发必备的Tomcat-servlet-http和spring boot基础入门

tomcat 介绍 概念: Tomcat是一个开源免费的轻量级Web服务器,是Apache软件基金会的核心项目,支持Servlet/JSP少量JavaEE(JakartaEE)规范。 JavaEE:Java Enterprise Edition,Java企业版。指Java企业级开发的技术规范总和…

【hacker送书第4期】推荐4本Java必读书籍(各送一本)

第4期图书推荐 Java从入门到精通(第7版)内容简介参与方式 项目驱动零基础学Java内容简介参与方式 深入理解Java高并发编程内容简介参与方式 Java编程讲义内容简介参与方式 Java从入门到精通(第7版) 内容简介 《Java从入门到精通&…

Android String.xml 设置加粗字体/修改字体颜色/动态设置修改文案

之前经常使用Spannable 这次主要在String.xml使用&#xff1a;<![CDATA[和]]> 效果&#xff1a; <resources><string name"str_bianse"><![CDATA[变色 <font color"#ff0000">曲项向天歌</font> 白毛浮绿水]]></st…

R语言gWQS包在加权分位数和回归模型的应用

在流行病学研究中&#xff0c;相较于单一因素的暴露&#xff0c;多因素同时暴露的情况更为常见。传统模型在评价多因素联合暴露时存在数据维度高、多重共线性等问题. WQS 回归模型的基本原理是通过分位数间距及加权的方法&#xff0c;将多种研究因素的效应综合成为一个指数&…

京东数据运营-京东数据平台-京东店铺数据分析-2023年10月京东烘干机品牌销售榜

鲸参谋监测的京东平台10月份烘干机市场销售数据已出炉&#xff01; 10月份&#xff0c;烘干机市场整体销售上涨。鲸参谋数据显示&#xff0c;今年10月份&#xff0c;京东平台上烘干机的销量将近5万件&#xff0c;环比增长约77%&#xff0c;同比增长约22%&#xff1b;销售额将近…

信号类型(通信)——最小频移键控(MSK)

系列文章目录 《信号类型&#xff08;通信&#xff09;——仿真》 《信号类型&#xff08;通信&#xff09;——QAM调制信号》 《信号类型&#xff08;通信&#xff09;——QPSK、OQPSK、IJF_OQPSK调制信号》 目录 前言 一、MSK信号特点 1.1、最小频移 1.2、相位连续 二…

制作心理咨询小程序的详细指南

随着科技的的发展&#xff0c;小程序已经成为了人们日常生活中不可或缺的一部分。特别是在心理咨询这个领域&#xff0c;小程序可以提供一个更为便捷、高效的服务平台。本文将通过乔拓云平台为例&#xff0c;详细介绍如何制作一个心理咨询小程序。 首先&#xff0c;我们需要注册…

L298N模块使用简介

接口作用ENA/ENB使用PWM调节马达转速&#xff08;调速&#xff09;左边一对接口接电机的正负极右边一对接口接电机正负极控制IN1,IN2 控制左边的2个接口的电压&#xff0c;IN1控制一个&#xff0c;IN2控制另外一个 IN1输入3.3V时&#xff0c;OUT1输出3.3v电压&#xff08;可能是…

7. 栈

栈(stack)是一种遵循先入后出的逻辑的线性数据结构。我们可以将栈类比为桌面上的一摞盘子&#xff0c;如果需要拿出底部的盘子&#xff0c;则需要先将上面的盘子依次取出。我们将盘子替换为各种类型的元素&#xff08;如整数、字符、对象等&#xff09;&#xff0c;就得到了栈数…

分析某款go端口扫描器之一

一、概述 进来在学go的端口检测部分&#xff0c;但是自己写遇到很多问题&#xff0c;又不知道从何入手&#xff0c;故找来网上佬们写的现成工具&#xff0c;学习一波怎么实现的。分析过程杂乱&#xff0c;没啥思路&#xff0c;勿喷。 项目来源&#xff1a;https://github.com/…

毫米波传感器系统性能测量(TI文档)

摘要 本应用报告讨论了使用德州仪器高性能毫米波传感器的系统性能测量结果。TI的毫米波传感器是一个77 GHz&#xff0c;高度集成的收发器&#xff0c;具有高速接口(CSI2)&#xff0c;可将原始ADC数据发送出去进行处理。毫米波传感器包括整个毫米波射频和模拟基带信号链&#xf…

异步操作的方法

在高级语言中已经有了异步的原语言&#xff0c;而在C 中的最好的方式就是 libevent 的方式,我这还是相当认同的&#xff0c;高级语言就不需要在苦哈哈的&#xff0c;事件转圈了&#xff0c;但是原理还是以事件为基础的 一句话就是在一个循环中等着他执行完,这个循环中有很多其他…

论文阅读:Distributed Initialization for VVIRO with Position-Unknown UWB Network

前言 Distributed Initialization for Visual-Inertial-Ranging Odometry with Position-Unknown UWB Network这篇论文是发表在ICRA 2023上的一篇文章&#xff0c;本文提出了一种基于位置未知UWB网络的一致性视觉惯性紧耦合优化测距算法( DC-VIRO )的分布式初始化方法。 对于…

【LeetCode刷题-字符串】--71.简化路径

71.简化路径 思路&#xff1a; 对于给定的字符串&#xff0c;先根据/分割成一个由若干字符串组成的列表&#xff0c;记为names&#xff0c;根据题意names中包含的字符串只能是以下几种&#xff1a; 空字符串一个点两个点只包含英文字母、数字或_的目录名 对于空字符串和一个…

Linux小程序之进度条

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;自己能实现进度条 > 毒鸡汤&#xff1a; > …

绘制折扇-第11届蓝桥杯选拔赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第11讲。 绘制折扇&#xf…

基于ssm亚盛汽车配件销售业绩管理系统

摘 要 如今的信息时代&#xff0c;对信息的共享性&#xff0c;信息的流通性有着较高要求&#xff0c;因此传统管理方式就不适合。为了让亚盛汽车配件销售信息的管理模式进行升级&#xff0c;也为了更好的维护亚盛汽车配件销售信息&#xff0c;亚盛汽车配件销售业绩管理系统的开…

牛客 算法题 【HJ102 字符统计】 golang实现

题目 HJ102 字符统计 golang代码实现 package mainimport ("bufio""fmt""os""sort" )func main() {// str_arry :make([]string, 0)str_map : make(map[rune]int)result_map : make(map[int][]string)scanner : bufio.NewScanner(os…