python基于YOLOv7系列模型【yolov7-tiny/yolov7/yolov7x】开发构建钢铁产业产品智能自动化检测识别系统

news2024/12/27 11:41:35

在前文的项目开发实践中,我们已经以钢铁产业产品缺陷检测数据场景为基准,陆续开发构建了多款目标检测模型,感兴趣的话可以自行阅读即可。

《YOLOv3老矣尚能战否?基于YOLOv3开发构建建钢铁产业产品智能自动化检测识别系统,我们来与YOLOv5进行全方位对比评测》

《基于官方YOLOv4开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》 

《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》 

《I助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统》

《python基于YOLOv6最新0.4.1分支开发构建钢铁产业产品智能自动化检测识别系统》

《python基于DETR(DEtection TRansformer)开发构建钢铁产业产品智能自动化检测识别系统》 

本文的主要目的就是延续这一业务场景的模型开发,基于yolov7来开发构建不同参数量级的钢铁产品智能化质检系统,首先来看实例效果:

本文主要选择了yolov7-tiny、yolov7和yolov7x三款不同参数量级的模型来开发我们所需要的目标检测系统。

简单看下数据集,如下所示:

共包含十种不同类型的产品缺陷。

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test



# number of classes
nc: 10

# class names
names: ['chongkong', 'hanfeng', 'yueyawan', 'shuiban', 'youban', 'siban', 'yiwu', 'yahen', 'zhehen', 'yaozhe']

yolov7-tiny.yaml如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  
  
   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7
   
   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14
   
   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21
   
   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28
  ]

# yolov7-tiny head
head:
  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, SP, [5]],
   [-2, 1, SP, [9]],
   [-3, 1, SP, [13]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -7], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37
  
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47
  
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57
   
   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 47], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65
   
   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 37], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73
      
   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

   [[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

yolov7.yaml如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],

   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

yolov7x.yaml如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [40, 3, 1]],  # 0
  
   [-1, 1, Conv, [80, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [80, 3, 1]],
   
   [-1, 1, Conv, [160, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [320, 1, 1]],  # 13
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [160, 1, 1]],
   [-3, 1, Conv, [160, 1, 1]],
   [-1, 1, Conv, [160, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 18-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [640, 1, 1]],  # 28
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [320, 1, 1]],
   [-3, 1, Conv, [320, 1, 1]],
   [-1, 1, Conv, [320, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 33-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [1280, 1, 1]],  # 43
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [640, 1, 1]],
   [-3, 1, Conv, [640, 1, 1]],
   [-1, 1, Conv, [640, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 48-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [1280, 1, 1]],  # 58
  ]

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [640]], # 59
  
   [-1, 1, Conv, [320, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [43, 1, Conv, [320, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [320, 1, 1]], # 73
   
   [-1, 1, Conv, [160, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [28, 1, Conv, [160, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [160, 1, 1]], # 87
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [160, 1, 1]],
   [-3, 1, Conv, [160, 1, 1]],
   [-1, 1, Conv, [160, 3, 2]],
   [[-1, -3, 73], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [320, 1, 1]], # 102
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [320, 1, 1]],
   [-3, 1, Conv, [320, 1, 1]],
   [-1, 1, Conv, [320, 3, 2]],
   [[-1, -3, 59], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [640, 1, 1]], # 117
   
   [87, 1, Conv, [320, 3, 1]],
   [102, 1, Conv, [640, 3, 1]],
   [117, 1, Conv, [1280, 3, 1]],

   [[118,119,120], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

默认完全相同的训练参数开始模型的训练。

训练完成后,我们来对三款模型进行对比评估可视化,如下所示:
【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

直观来看,三款模型没有特别大的差异,yolov7整体性能接近于yolov7x,在实际使用的时候可以优先考虑。如果算力首先可以直接使用tiny版本的模型也是可以的。

可视化推理实例如下所示:
 

能够同时满足图像推理计算和视频推理计算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1263170.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SSM跆拳道网站系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 跆拳道网站系统是一套完善的信息系统,结合springMVC框架完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库,系统主要采用B/S模…

Apipost也出IDEA插件了?Apipost-Helper!

IDEA是一款功能强大的集成开发环境(IDE),它可以帮助开发人员更加高效地编写、调试和部署软件应用程序。我们在编写完接口代码后需要进行接口调试等操作,一般需要打开额外的调试工具。 今天给大家介绍一款IDEA插件:Api…

DM8误删除操作恢复方案

达梦数据库三种在误删除操作后的回退方案 一、闪回表 当用户操作不慎导致错误的删改数据时,闪回方式可以恢复数据。闪回技术,就是为了用户可以迅速处理这种 数据逻辑损坏的情况而产生的。 闪回技术主要是通过回滚段存储的 UNDO 记录来完成历史记录的还原…

【傻瓜级JS-DLL-WINCC-PLC交互】4.DLL读取WINCC内部变量

思路 JS-DLL-WINCC-PLC之间进行交互,思路,先用Visual Studio创建一个C#的DLL控件,然后这个控件里面嵌入浏览器组件,实现JS与DLL通信,然后DLL放入到WINCC里面的图形编辑器中,实现DLL与WINCC的通信。然后PLC与…

OpenHarmonyMeetup2023北京站圆满举办

“OpenHarmony正当时”OpenHarmonyMeetup2023城市巡回活动,旨在通过meetup线下交流形式,解读OpenHarmony作为下一代智能终端操作系统的新版本及成果转化,提升开发者对OpenHarmony的关注度,普及OpenHarmony开发技能,加速开发者对OpenHarmony的掌握,从而吸引更多企业和技术爱好者…

在 The Sandbox 设置总部,SCB 10X 和 T-POP 为 4EVE 元宇宙音乐会揭幕

协作学习为全球粉丝提供了无限的可能性,让他们通过革命性的元宇宙体验沉浸在泰国流行文化中。 作为 SCBX 集团背后的创新力量,SCB 10X 很高兴宣布与 T-POP Incorporation 展开开创性合作,T-POP Incorporation 是泰国流行文化在全球舞台上的领…

Phpstudy v8.0/8.1添加 php-7.4.9

1、官网下载最新的php版本 打开Windows版的官网下载,地址:PHP For Windows: Binaries and sources Releases 页面上有不同的PHP版本,这里我们下载的是64位nts版的PHP7.4.9,php-7.4.9-nts-Win32-vc15-x64.zip。 2、解压下载的文…

苹果mac屏幕投屏镜像工具AirServer2024

airserver 是什么软件?AirServer 是一款 Airplay Mac屏幕镜像应用,AirServer可以通过 mac 实时接收iPhone、iPad以及Android设备的实时屏幕画面。AirServer 可以将一个简单的大屏幕或投影仪变成一个通用的屏幕镜像接收器。在您的大屏幕上启用 AirServer …

量子力学:科技前沿的探索与挑战

量子力学:科技前沿的探索与挑战 一、量子力学的魅力与挑战 量子力学是研究微观粒子如电子、光子等行为的物理学分支。与经典力学不同,量子力学描述了一个充满不确定性和概率性的世界。在这个世界里,粒子可以同时处于多个状态,只有当我们对其进行测量时,它才会“选择”一个…

【Python深度学习第二版】学习笔记之——什么是深度学习

机器学习是将输入(比如图像)映射到目标(比如标签“猫”)的过程。 这一过程是通过观察许多输入和目标的示例来完成的。 深度神经网络通过一系列简单的数据变换(层)来实现这种输入到目标的映射,这…

入侵redis之准备---Linux关于定时任务crontab相关知识了解配合理解shell反弹远程控制

入侵redis之准备—Linux关于定时任务crontab相关知识了解配合理解shell反弹远程控制 几点需要知道的信息 【1】crontab一般来说服务器都是有的,依赖crond服务,这个服务也是必须安装的服务,并且也是开机自启动的服务,也就是说&…

国内高速下载huggingface上的模型

前提 Python版本至少是3.8 安装 安装hugging face官方提供的下载工具 pip install -U huggingface_hub hf-transfer Windows设置环境变量 在当前窗口设置临时环境变量(cmd.exe) set HF_HUB_ENABLE_HF_TRANSFER 1 你也可以设置永久的环境变量&am…

鸿蒙开发ArkUI -常用布局

线性布局(Row/Column) 间距/主轴排列方式/交叉轴对齐方式 Column({}) {Column() {}.width(80%).height(50).backgroundColor(0xF5DEB3)Column() {}.width(80%).height(50).backgroundColor(0xD2B48C)Column() {}.width(80%).height(50).backgroundColor(0xF5DEB3) } .width(1…

【图像分割】【深度学习】PFNet官方Pytorch代码-PFNet网络损失函数模块解析

【图像分割】【深度学习】PFNet官方Pytorch代码-PFNet网络损失函数模块解析 文章目录 【图像分割】【深度学习】PFNet官方Pytorch代码-PFNet网络损失函数模块解析前言PM定位模块损失函数FM聚焦模块损失函数总结 前言 在详细解析PFNet代码之前,首要任务是成功运行PF…

面试篇spark(spark core,spark sql,spark 优化)

一:为什么学习spark? 相比较map-reduce框架,spark的框架执行效率更加高效。 mapreduce的执行框架示意图。 spark执行框架示意图 spark的执行中间结果是存储在内存当中的,而hdfs的执行中间结果是存储在hdfs中的。所以在运算的时…

深入理解强化学习——马尔可夫决策过程:贝尔曼期望方程-[举例与代码实现]

分类目录:《深入理解强化学习》总目录 在文章《深入理解强化学习——马尔可夫决策过程:贝尔曼期望方程-[基础知识]》中我们讲到了贝尔曼期望方程,本文就举一个贝尔曼期望方程的具体例子,并给出相应代码实现。 下图是一个马尔可夫…

Harmony OS4开发入门

代码地址: https://gitee.com/BruceLeeAdmin/harmonyos/tree/master 项目目录介绍 ArkTS介绍 简单案例: State times: number 0/*数据类型:stringnumberany: 不确定类型,可以是任意类型*/State msg: string "hello"…

正点原子linux应用编程——提高篇1

在之前的入门篇学习中,都是直接在Ubuntu中进行验证的,对于嵌入式Linux系统来说,也是可以直接移植的,只需要使用嵌入式硬件平台对应的交叉编译工具编译应用程序即可运行。 在嵌入式Linux系统中,编写的应用程序通常需要…

uniapp使用vue3和ts开发小程序获取用户城市定位

这个组件的功能:可以重新定位获取到用户的具体位置,这个是通过getLocation这个api和高德地图的api获取到的,getLocation这个api需要在微信公众平台后台>开发管理> 接口管理里面申请才能使用的,不然无法使用哦,这…

数学老师怎么和家长沟通

作为一名数学老师,与家长建立良好的沟通关系是非常重要的。以下是我个人认为可以帮助与家长有效沟通的建议: 建立良好的第一印象 第一次与家长接触时,要尽可能展现出你的专业素养和热情。在交流中,要表达出你对孩子的关心和重视&…