C/C++ Zlib实现文件压缩与解压

news2024/11/17 1:35:42

在软件开发和数据处理中,对数据进行高效的压缩和解压缩是一项重要的任务。这不仅有助于减小数据在网络传输和存储中的占用空间,还能提高系统的性能和响应速度。本文将介绍如何使用 zlib 库进行数据的压缩和解压缩,以及如何保存和读取压缩后的文件。zlib 是一个开源的数据压缩库,旨在提供高效、轻量级的压缩和解压缩算法。其核心压缩算法基于 DEFLATE,这是一种无损数据压缩算法,通常能够提供相当高的压缩比。zlib 库广泛应用于多个领域,包括网络通信、文件压缩、数据库系统等。

保存文件

使用 CreateFile 打开文件,通过 WriteFile 向文件中写出数据,最后调用 CloseHandle 关闭句柄,实现文件的保存。

#define ZLIB_WINAPI
#include <string>
#include <iostream>
#include <vector>
#include <Shlwapi.h> 
#include <zip.h>
#include <unzip.h>
#include <zlib.h>

using namespace std;

#pragma comment(lib, "Shlwapi.lib")
#pragma comment(lib, "zlibstat.lib")

BOOL SaveToFile(char *pszFileName, BYTE *pData, DWORD dwDataSize)
{
	char szSaveName[MAX_PATH] = { 0 };
	lstrcpy(szSaveName, pszFileName);

	HANDLE hFile = CreateFile(szSaveName, GENERIC_READ | GENERIC_WRITE,
		FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, CREATE_ALWAYS,
		FILE_ATTRIBUTE_ARCHIVE, NULL);
	if (INVALID_HANDLE_VALUE == hFile)
	{
		return FALSE;
	}

	DWORD dwRet = 0;
	WriteFile(hFile, pData, dwDataSize, &dwRet, NULL);

	CloseHandle(hFile);

	return TRUE;
}

int main(int argc, char * argv[])
{
	char szBuffer[1024] = { 0 };

	strcpy(szBuffer, "test 123123");

	SaveToFile("d://test.txt", (BYTE *)szBuffer, sizeof(szBuffer));

	system("pause");
	return 0;
}

文件压缩

compress 是 zlib 库提供的用于数据压缩的函数,通过该函数可以将数据进行压缩。下面是一个示例,演示了如何使用 zlib 库进行文件压缩。

它的原型如下:

int compress(Bytef* dest, uLongf* destLen, const Bytef* source, uLong sourceLen);
  • dest:指向存放压缩后数据的缓冲区的指针。
  • destLen:传入时为压缩缓冲区的大小,传出时为实际压缩后数据的大小。
  • source:指向待压缩数据的缓冲区的指针。
  • sourceLen:待压缩数据的大小。

compress 函数的作用是将 source 指向的数据进行压缩,并将结果存放在 dest 指向的缓冲区中。destLen 传入时应该是 dest 缓冲区的大小,函数执行后,destLen 会更新为实际压缩后数据的大小。

函数返回值为压缩的执行状态,可能的返回值包括:

  • Z_OK:压缩成功。
  • Z_MEM_ERROR:内存分配失败。
  • Z_BUF_ERROR:压缩输出缓冲区不足。

这个函数实际上是使用 DEFLATE 算法进行压缩,DEFLATE 是一种通用的压缩算法,也是 zlib 库的核心算法之一。压缩后的数据可以使用 uncompress 函数进行解压缩。

总体而言,compress 函数提供了一种简单的方式,可以在应用程序中对数据进行压缩,适用于需要减小数据体积的场景,比如网络传输或数据存储。

// 单个文件限制大小为 100M 
#define MAX_SRC_FILE_SIZE (100*1024*1024)

/**
 * @brief 压缩指定文件的数据
 *
 * @param pszCompressFileName 待压缩文件的路径
 * @param ppCompressData 保存压缩后数据的指针
 * @param pdwCompressDataSize 传入时为压缩缓冲区的大小,传出时为实际压缩后数据的大小
 * @return 压缩是否成功,成功返回 TRUE,否则返回 FALSE
 */
BOOL CompressData(char *pszCompressFileName, BYTE **ppCompressData, DWORD *pdwCompressDataSize)
{
  HANDLE hFile = CreateFile(pszCompressFileName, GENERIC_READ,
    FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING,
    FILE_ATTRIBUTE_ARCHIVE, NULL);

  // 检查文件句柄是否有效
  if (INVALID_HANDLE_VALUE == hFile)
  {
    return FALSE;
  }

  // 获取文件大小
  DWORD dwFileSize = GetFileSize(hFile, NULL);

  // 检查文件大小是否超过限制
  if (MAX_SRC_FILE_SIZE < dwFileSize)
  {
    CloseHandle(hFile);
    return FALSE;
  }

  DWORD dwDestDataSize = dwFileSize;

  // 分配源数据和目标数据的内存
  BYTE *pSrcData = new BYTE[dwFileSize];
  if (NULL == pSrcData)
  {
    CloseHandle(hFile);
    return FALSE;
  }

  BYTE *pDestData = new BYTE[dwDestDataSize];
  if (NULL == pDestData)
  {
    delete[] pSrcData;
    CloseHandle(hFile);
    return FALSE;
  }

  DWORD dwRet = 0;

  // 读取源数据
  ReadFile(hFile, pSrcData, dwFileSize, &dwRet, NULL);

  // 检查读取是否成功
  if ((0 >= dwRet) || (dwRet != dwFileSize))
  {
    delete[] pDestData;
    delete[] pSrcData;
    CloseHandle(hFile);
    return FALSE;
  }

  int iRet = 0;

  // 压缩数据
  do
  {
    iRet = compress(pDestData, &dwDestDataSize, pSrcData, dwFileSize);

    // 压缩成功,退出循环
    if (0 == iRet)
    {
      break;
    }
    // 输出缓冲区不足,增加缓冲区大小并重试
    else if (-5 == iRet)
    {
      delete[] pDestData;
      pDestData = NULL;
      dwDestDataSize = dwDestDataSize + (100 * 1024);
      pDestData = new BYTE[dwDestDataSize];

      // 分配新的目标数据内存
      if (NULL == pDestData)
      {
        delete[] pSrcData;
        CloseHandle(hFile);
        return FALSE;
      }
    }
    // 压缩失败,释放内存并返回失败
    else
    {
      delete[] pDestData;
      pDestData = NULL;
      delete[] pSrcData;
      pSrcData = NULL;
      CloseHandle(hFile);
      return FALSE;
    }
  } while (TRUE);

  // 保存压缩后数据的指针和实际大小
  *ppCompressData = pDestData;
  *pdwCompressDataSize = dwDestDataSize;

  // 释放源数据内存
  delete[] pSrcData;

  // 关闭文件句柄
  CloseHandle(hFile);

  // 返回压缩成功
  return TRUE;
}

文件解压缩

uncompress 函数是 zlib 库提供的用于数据解压缩的函数,通过该函数可以将压缩后的数据解压缩还原。下面是一个示例,演示了如何使用 zlib 库进行文件解压缩。

它的原型如下:

int uncompress(Bytef* dest, uLongf* destLen, const Bytef* source, uLong sourceLen);
  • dest:指向存放解压缩后数据的缓冲区的指针。
  • destLen:传入时为解压缩缓冲区的大小,传出时为实际解压缩后数据的大小。
  • source:指向待解压缩数据的缓冲区的指针。
  • sourceLen:待解压缩数据的大小。

uncompress 函数的作用是将 source 指向的数据进行解压缩,并将结果存放在 dest 指向的缓冲区中。destLen 传入时应该是 dest 缓冲区的大小,函数执行后,destLen 会更新为实际解压缩后数据的大小。

函数返回值为解压缩的执行状态,可能的返回值包括:

  • Z_OK:解压缩成功。
  • Z_MEM_ERROR:内存分配失败。
  • Z_BUF_ERROR:解压缩输出缓冲区不足。
  • Z_DATA_ERROR:输入数据错误或损坏。

uncompress 函数实际上是使用 DEFLATE 算法进行解压缩,与 compress 函数相对应。这两个函数共同构成了 zlib 库中的基本数据压缩和解压缩功能。

在实际应用中,可以使用这两个函数来处理需要压缩和解压缩的数据,例如在网络通信中减小数据传输量或在存储数据时减小占用空间。

/**
 * @brief 解压指定文件的数据
 *
 * @param pszUncompressFileName 待解压文件的路径
 * @param ppUncompressData 保存解压后数据的指针
 * @param pdwUncompressDataSize 传入时为解压缓冲区的大小,传出时为实际解压后数据的大小
 * @return 解压是否成功,成功返回 TRUE,否则返回 FALSE
 */
BOOL UncompressData(char *pszUncompressFileName, BYTE **ppUncompressData, DWORD *pdwUncompressDataSize)
{
  HANDLE hFile = CreateFile(pszUncompressFileName, GENERIC_READ,
    FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING,
    FILE_ATTRIBUTE_ARCHIVE, NULL);

  // 检查文件句柄是否有效
  if (INVALID_HANDLE_VALUE == hFile)
  {
    return FALSE;
  }

  // 获取文件大小
  DWORD dwFileSize = GetFileSize(hFile, NULL);

  // 设置目标数据缓冲区大小
  DWORD dwDestDataSize = MAX_SRC_FILE_SIZE;

  // 分配源数据和目标数据的内存
  BYTE *pSrcData = new BYTE[dwFileSize];
  if (NULL == pSrcData)
  {
    CloseHandle(hFile);
    return FALSE;
  }

  BYTE *pDestData = new BYTE[dwDestDataSize];
  if (NULL == pDestData)
  {
    delete[] pSrcData;
    CloseHandle(hFile);
    return FALSE;
  }

  DWORD dwRet = 0;

  // 读取源数据
  ReadFile(hFile, pSrcData, dwFileSize, &dwRet, NULL);

  // 检查读取是否成功
  if ((0 >= dwRet) || (dwRet != dwFileSize))
  {
    delete[] pDestData;
    delete[] pSrcData;
    CloseHandle(hFile);
    return FALSE;
  }

  int iRet = 0;

  // 解压缩数据
  do
  {
    iRet = uncompress(pDestData, &dwDestDataSize, pSrcData, dwFileSize);

    // 解压缩成功,退出循环
    if (0 == iRet)
    {
      break;
    }
    // 输出缓冲区不足,增加缓冲区大小并重试
    else if (-5 == iRet)
    {
      delete[] pDestData;
      pDestData = NULL;
      dwDestDataSize = dwDestDataSize + (100 * 1024);
      pDestData = new BYTE[dwDestDataSize];

      // 分配新的目标数据内存
      if (NULL == pDestData)
      {
        delete[] pSrcData;
        CloseHandle(hFile);
        return FALSE;
      }
    }
    // 解压缩失败,释放内存并返回失败
    else
    {
      delete[] pDestData;
      pDestData = NULL;
      delete[] pSrcData;
      pSrcData = NULL;
      CloseHandle(hFile);
      return FALSE;
    }
  } while (TRUE);

  // 保存解压后数据的指针和实际大小
  *ppUncompressData = pDestData;
  *pdwUncompressDataSize = dwDestDataSize;

  // 释放源数据内存
  delete[] pSrcData;

  // 关闭文件句柄
  CloseHandle(hFile);

  // 返回解压成功
  return TRUE;
}

演示示例

下面是一个包含文件压缩和解压缩的完整示例,展示了如何将文件进行压缩保存,然后解压还原。

调用CompressData压缩文件,返回结果pCompressData存放文件内存字节,结果dwCompressDataSize存放长度,并调用SaveToFile保存到本地。

int main(int argc, char* argv[])
{
  BOOL bRet = FALSE;
  BYTE *pCompressData = NULL;
  DWORD dwCompressDataSize = 0;

  // 压缩文件
  bRet = CompressData("d:\\test.exe", &pCompressData, &dwCompressDataSize);
  if (TRUE == bRet)
  {
    std::cout << "已压缩" << std::endl;
  }

  // 保存压缩数据为文件
  bRet = SaveToFile("d:\\text.zlib", pCompressData, dwCompressDataSize);
  if (TRUE == bRet)
  {
    std::cout << "已保存到文件" << std::endl;
  }

  // 释放内存
  delete[]pCompressData;
  pCompressData = NULL;

  system("pause");
  return 0;
}

调用UncompressData解压缩文件,返回结果pUncompressData存放文件内存字节,结果dwUncompressDataSize存放长度,并调用SaveToFile保存到本地。

int main(int argc, char* argv[])
{
  BOOL bRet = FALSE;
  BYTE *pUncompressData = NULL;
  DWORD dwUncompressDataSize = 0;

  // 解压文件
  bRet = UncompressData("d:\\test.zlib", &pUncompressData, &dwUncompressDataSize);
  if (TRUE == bRet)
  {
    std::cout << "已解压" << std::endl;
  }

  // 保存解压数据为文件
  bRet = SaveToFile("d:\\test.exe", pUncompressData, dwUncompressDataSize);
  if (TRUE == bRet)
  {
    std::cout << "已保存到文件" << std::endl;
  }

  // 释放内存
  delete[]pUncompressData;
  pUncompressData = NULL;

  system("pause");
  return 0;
}

编译时可能会提示无法生成SAFESEH影响的报错信息,如下图所示;

此时打开项目属性页,找到链接器,高级选项卡,将映像安全处理改为否即可,如下图所示;

结论

通过使用 zlib 库,我们可以方便地在应用程序中实现数据的压缩和解压缩功能。这对于需要减小数据传输量或在存储数据时减小占用空间的场景非常有用。在实际应用中,可以根据需要调整缓冲区大小和处理流程,以适应不同的数据处理需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1262163.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

打游戏NVIDIA怎么设置性能最好?

打游戏NVIDIA怎么设置性能最好&#xff1f;当前很多用户都在Win10电脑上畅玩游戏&#xff0c;所以想知道NVIDIA控制面板最佳设置方法&#xff0c;更好地发挥NVIDIA控制面板性能&#xff0c;用户就能享受更棒的游戏乐趣。接下来小编给大家详细介绍NVIDIA显卡游戏最佳设置步骤教程…

【密码学引论】Hash密码

第六章 Hash密码 md4、md5、sha系列、SM3 定义&#xff1a;将任意长度的消息映射成固定长度消息的函数功能&#xff1a;确保数据的真实性和完整性&#xff0c;主要用于认证和数字签名Hash函数的安全性&#xff1a;单向性、抗若碰撞性、抗强碰撞性生日攻击&#xff1a;对于生日…

antd vue a-select 下拉框位置偏移

问题 下拉框未固定 原因 select下拉框的定位是根据body定位 解决方法 在select 标签中添加&#xff1a; :getPopupContainer"(triggerNode) > (triggerNode.parentElement)" :getPopupContainer"(triggerNode) > (triggerNode.parentElement)"…

第20章多线程

创建线程 继承Thread 类 Thread 类时 java.lang 包中的一个类&#xff0c;从类中实例化的对象代表线程&#xff0c;程序员启动一个新线程需要建立 Thread 实例。 Thread 对象需要一个任务来执行&#xff0c;任务是指线程在启动时执行的工作&#xff0c;start() 方法启动线程&am…

leetcode 1670

leetcode 1670 解题思路 使用2个deque作为类的成员变量 code class FrontMiddleBackQueue { public:deque<int> left;deque<int> right;FrontMiddleBackQueue() {}void pushFront(int val) {left.push_front(val);if(left.size() right.size()2){right.push_fr…

IDEA编译器技巧-提示词忽略大小写

IDEA编译器技巧-提示词忽略大小写 写代码时,每次创建对象都要按住 Shift 字母 做大写开头, 废手, 下面通过编译器配置解放Shift 键 setting -> Editor -> General -> Code Completion -> Match case 把这个√去掉, 创建对象就不需要再按住 Shift 键 示例: 1.…

【1】AR Tag 在ros中的使用

1.定义 AR Tag 是一种用于增强现实&#xff08;AR&#xff09;应用中的视觉标记&#xff0c;用于跟踪和定位虚拟物体在现实世界中的位置。 AR Tag由黑白正方形图像表示&#xff0c;图像内部有黑色边框中的某些图案。它与我们经常用到的二维码长得类似&#xff0c;原理其实也一…

Spring Cloud+Nacos 注册中心详解及开发示例

目录 一、Nacos 的关键特性包括: 二、逻辑架构及其组件介绍 三、Nacos安装 1、版本选择 2、预备环境准备 3、下载源码或者安装包 4、启动服务器 5、关闭服务器 四、如何引入 Nacos Discovery Starter 五、启动一个 Provider 应用 1 pom.xml的配置。一个完整的 pom.xm…

GitHub 2023排名前十的最佳开源项目

开源软件&#xff08;OSS&#xff09;彻底改变了当今软件开发的方式。在数百万个开源GitHub项目中&#xff0c;要找到最适合需求的开源项目可能会让人不知所措。 今天给大家列出2023年增长最快的前10个开源GitHub仓库。通过这些增长最快的开源项目&#xff0c;也可以从整体上了…

搭建你自己的网盘-个人云存储的终极解决方案-nextcloud AIO(二)

今天接着上篇&#xff0c;我们继续来玩nextcloud AIO. 当我们看到这个页面的时候&#xff0c;则证明AIO已经安装好了&#xff0c;登录账号和密码在图上已经标注了。点击open your nextcloud 即可跳转到我们的域名的登录页。 输入用户名和密码后登录即可。 打开前台页面&#x…

打破TikTok信息壁垒:东南亚达人不实名就封小黄车?跨境新店考核规则更改!

近期&#xff0c;TKFFF得到一个模糊消息&#xff0c;不保真但是个合规的趋势&#xff0c;分享给大家&#xff01; 目前泰国已落实达人实名制&#xff0c;11月底或者12月底之前可能东南亚所有达人都需要实名制&#xff0c;后期也会同步到全球。 如果达人不实名&#xff0c;会被…

云计算就该这么学!保姆级云计算架构师学习路线!

2019年&#xff0c;根据人社部中国就业培训技术指导中心发布的《新职业在线学习平台发展报告》显示&#xff0c;未来5年内&#xff0c;我国云计算产业将面临高达近150万的人才缺口&#xff0c;人工智能面临500万缺口&#xff0c;大数据需求将达到210万&#xff01; 云计算领域人…

oracle数据库备份2(expdp)

使用exp命令定时进行数据库备份的操作前面已经记录过&#xff1a; oralce数据库定时备份 下面记录下使用更加高效的expdp命令和impdp&#xff0c;这两个命令同样是用来做数据库备份和还原的&#xff0c;但速度更快&#xff0c;效率更高&#xff0c;缺点是只能用在服务器端进行…

为什么API管理工具对开发人员有益?

应用程序编程接口 &#xff08;API&#xff09; 用于在应用程序之间创建连接&#xff0c;以允许它们相互通信。这种连接是当今数字世界运作方式不可或缺的一部分。实际上&#xff0c;API 使企业能够集成系统&#xff0c;通过创新提供更好的服务和产品。 这就是为什么在 IT 内部…

lack——主页前后端开发优化(精华:java多线程实现数据插入)

lack——主页前后端开发优化 前端开发主页 最容易的方式&#xff1a;list列表<template><van-cardv-for"user in props.userList":desc"user.profile":title"${user.username} (${user.planetCode})":thumb"user.avatarUrl"…

【开源】基于JAVA的农村物流配送系统

项目编号&#xff1a; S 024 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S024&#xff0c;文末获取源码。} 项目编号&#xff1a;S024&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统登录、注册界面2.2 系统功能2.2…

爬虫必学:Java创建代理ip池详细教程

目录 一、引言 二、代理IP池的基本概念 三、Java创建代理IP池的步骤 1、引入相关依赖 2、创建代理IP池类 3、代理IP的获取与释放 四、代理IP的获取方式 五、总结 一、引言 网络爬虫是自动从网站抓取信息的程序。在爬虫运行过程中&#xff0c;经常遇到的问题之一是目标…

初刷leetcode题目(9)——数据结构与算法

&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️…

开源六轴协作机械臂MechArm案例演示!

介绍 今天&#xff0c;我将向大家展示一个我独立设计并实现的机械臂模型。这个模型的核心功能是实现实时的手势追踪——只需用手轻轻拖拽&#xff0c;机械臂就能立即跟随你的动作进行移动。 我之所以想要创造这样一个模型&#xff0c;是因为在一些危险环境中&#xff0c;我们可…

I2C 通信-stm32入门

关于 I2C 通信的内容主要分为 两大块。 第一块&#xff1a;介绍协议规则&#xff0c;然后用软件模拟的形式来实现协议。第二块&#xff1a;介绍 STM32 的 I2C 外设&#xff0c;然后用硬件来实现协议。 因为 I2C 是同步时序&#xff0c;软件模拟协议也非常方便&#xff0c;目前…