SpringCloud 微服务全栈体系(十八)

news2024/11/27 10:21:44

第十一章 分布式搜索引擎 elasticsearch

八、RestClient 查询文档

  • 文档的查询同样适用 RestHighLevelClient 对象,基本步骤包括:

    • 准备 Request 对象
    • 准备请求参数
    • 发起请求
    • 解析响应

1. 快速入门

  • 以 match_all 查询为例
1.1 发起查询请求

在这里插入图片描述

  • 代码解读:

    • 第一步,创建SearchRequest对象,指定索引库名

    • 第二步,利用request.source()构建 DSL,DSL 中可以包含查询、分页、排序、高亮等

      • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个 match_all 查询的 DSL
    • 第三步,利用 client.search()发送请求,得到响应

  • 这里关键的 API 有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

在这里插入图片描述

  • 另一个是QueryBuilders,其中包含 match、term、function_score、bool 等各种查询:

请添加图片描述

1.2 解析响应
  • elasticsearch 返回的结果是一个 JSON 字符串,结构包含:

    • hits:命中的结果
      • total:总条数,其中的 value 是具体的总条数值
      • max_score:所有结果中得分最高的文档的相关性算分
      • hits:搜索结果的文档数组,其中的每个文档都是一个 json 对象
        • _source:文档中的原始数据,也是 json 对象
  • 因此,解析响应结果,就是逐层解析 JSON 字符串,流程如下:

    • SearchHits:通过 response.getHits()获取,就是 JSON 中的最外层的 hits,代表命中的结果
      • SearchHits.getTotalHits().value:获取总条数信息
      • SearchHits.getHits():获取 SearchHit 数组,也就是文档数组
        • SearchHit.getSourceAsString():获取文档结果中的_source,也就是原始的 json 文档数据
1.3 完整代码
  • 完整代码如下:
@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}
1.4 小结
  • 查询的基本步骤是:

    • 创建 SearchRequest 对象

    • 准备 Request.source(),也就是 DSL。

      • QueryBuilders 来构建查询条件

      • 传入 Request.source() 的 query() 方法

    • 发送请求,得到结果

    • 解析结果(参考 JSON 结果,从外到内,逐层解析)

2. match 查询

  • 全文检索的 match 和 multi_match 查询与 match_all 的 API 基本一致。差别是查询条件,也就是 query 的部分。

在这里插入图片描述

  • 因此,Java 代码上的差异主要是 request.source().query()中的参数了。同样是利用 QueryBuilders 提供的方法:

在这里插入图片描述

  • 而结果解析代码则完全一致,可以抽取并共享。

  • 完整代码如下:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

3. 精确查询

  • 精确查询主要是两者:

    • term:词条精确匹配
    • range:范围查询
  • 与之前的查询相比,差异同样在查询条件,其它都一样。

  • 查询条件构造的 API 如下:

在这里插入图片描述

4. 布尔查询

  • 布尔查询是用 must、must_not、filter 等方式组合其它查询,代码示例如下:

在这里插入图片描述

  • 可以看到,API 与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

  • 完整代码如下:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

5. 排序、分页

  • 搜索结果的排序和分页是与 query 同级的参数,因此同样是使用 request.source()来设置。

  • 对应的 API 如下:

在这里插入图片描述

  • 完整代码示例:
@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

6. 高亮

  • 高亮的代码与之前代码差异较大,有两点:

    • 查询的 DSL:其中除了查询条件,还需要添加高亮条件,同样是与 query 同级。
    • 结果解析:结果除了要解析_source 文档数据,还要解析高亮结果
6.1 高亮请求构建
  • 高亮请求的构建 API 如下:

在这里插入图片描述

  • 上述代码省略了查询条件部分,但是不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

  • 完整代码如下:

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}
6.2 高亮结果解析
  • 高亮的结果与查询的文档结果默认是分离的,并不在一起。

  • 因此解析高亮的代码需要额外处理:

在这里插入图片描述

  • 代码解读:

    • 第一步:从结果中获取 source。hit.getSourceAsString(),这部分是非高亮结果,json 字符串。还需要反序列为 HotelDoc 对象
    • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个 Map,key 是高亮字段名称,值是 HighlightField 对象,代表高亮值
    • 第三步:从 map 中根据高亮字段名称,获取高亮字段值对象 HighlightField
    • 第四步:从 HighlightField 中获取 Fragments,并且转为字符串。这部分就是真正的高亮字符串了
    • 第五步:用高亮的结果替换 HotelDoc 中的非高亮结果
  • 完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1257308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Java SSM框架+Vue实现药品销售进销存网站项目【项目源码+论文说明】

基于java的SSM框架Vue实现药品销售进销存网站演示 摘要 随着科学技术的飞速发展&#xff0c;各行各业都在努力与现代先进技术接轨&#xff0c;通过科技手段提高自身的优势&#xff1b;对于药品管理系统当然也不能排除在外&#xff0c;随着网络技术的不断成熟&#xff0c;带动了…

岂曰无衣 汉家衣裳再现锦绣美景

——福州第五届1122汉服节出行盛大开幕11月25日下午&#xff0c;闽江之心海丝广场&#xff0c;一场盛大的汉服文化节——福州第五届1122汉服节出行活动在这里隆重开幕。这个被誉为“穿在身上的历史”的传统文化&#xff0c;在这片古老而神秘的土地上焕发出新的生机与活力。据了…

Win10电脑用U盘重装系统的步骤

在Win10电脑中&#xff0c;用户遇到了无法解决的系统问题&#xff0c;用户这时候就可以考虑重装Win10系统&#xff0c;这样即可轻松解决问题&#xff0c;从而满足自己的操作需求。接下来小编给大家详细介绍关于Win10电脑中用U盘重装系统的教程步骤。 准备工作 1. 一台正常联网可…

group by

引入 日常开发中&#xff0c;我们经常会使用到group by。你是否知道group by的工作原理呢&#xff1f;group by和having有什么区别呢&#xff1f;group by的优化思路是怎样的呢&#xff1f;使用group by有哪些需要注意的问题呢&#xff1f; 使用group by的简单例子group by 工…

火力发电厂电气一次部分初步设计(论文+图纸)

1 原始资料 设计电厂为中型是凝汽式发电厂&#xff0c;共4台发电机组&#xff0c;2台75MW机组&#xff0c;2台50MW机组&#xff0c;总的装机容量为250MW&#xff0c;占系统容量的比例为&#xff1a; 250/(3500250)100%6.7%<15%&#xff0c;未超过电力系统的检修备用容量和…

深入理解JMM以及并发三大特性(2)

书接上文 文章目录 (1)CPU高速缓存(2)缓冲一致性(3)总线仲裁机制(4)总线窥探(Bus Snooping) 前面介绍到实现可见性&#xff0c;底层常用的一种方案是使用内存屏障&#xff0c;而内存屏障在汇编层面又是使用lock前缀指令来实现的&#xff0c;所以这里来介绍一下lock前缀指令。 …

skywalking 简单操作文档

1.1. 基础概念 1.1.1. 概述 SkyWalking是 apache基金会下面的一个开源 APM项目&#xff0c;为微服务架构和云原生架构系统设计。它通过探针自动收集所需的指标&#xff0c;并进行分布式追踪。通过这些调用链路以及指标&#xff0c;Skywalking APM会感知应用间关系和服务间关系…

酷开科技 | 酷开系统,让你与家人共度美好时光!

在日渐繁忙的生活中&#xff0c;我们常常会忽略和家人朋友的相处时光&#xff0c;有时候&#xff0c;我们亟需一种休闲方式&#xff0c;让家庭成员能够围坐在一起&#xff0c;享受无忧无虑的温馨和欢笑。酷开科技&#xff0c;致力于为消费者提供舒适的产品和服务内容&#xff0…

Windows11系统如何将此电脑和回收站图标放置在桌面上?

Windows11系统如何将此电脑和回收站图标放置在桌面上&#xff1f; 如下图所示&#xff0c;点击“开始”图标&#xff0c;&#xff0c;找到“设置”&#xff0c; 如下图所示&#xff0c;进入设置后&#xff0c;找到个性化—主题&#xff0c; 如下图所示&#xff0c;在个性化—主…

免费分享一套基于springboot的餐饮美食分享平台系统,挺漂亮的

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的基于springboot的餐饮美食分享平台系统&#xff0c;分享下哈。 项目视频演示 【免费】基于springboot的餐饮美食分享平台 Java毕业设计_哔哩哔哩_bilibili【免费】基于springboot的餐饮美食分享平台 Java毕…

校园导游程序及通信线路设计(结尾附着总源码)

校园导游程序及通信线路设计 摘  要 新生或来访客人刚到校园&#xff0c;对校园的环境不熟悉。就需要一个导游介绍景点&#xff0c;推荐到下一个景点的最佳路径等。随着科技的发展&#xff0c;社会的进步&#xff0c;人们对便捷的追求也越来越高。为了减少人力和时间。针对对…

VMWare虚拟机ubuntu克隆打不开

ubuntu克隆打不开 复制的存有ubuntu克隆的文件夹&#xff0c;导入vmware打不开 说找不到这个文件&#xff0c;那就到目录把它的删掉 的删掉 换000001.vmdk后缀的

好用的基于layui的免费开源后台模版layuimini

发现一个好用的后台模版 基于layui的免费开源后台模版layuimini layuimini - 基于Layui的后台管理系统前端模板 easyadmin开源项目 EasyAdmin是基于ThinkPHP6.0Layui的快速开发的后台管理系统。 演示站点 演示地址&#xff1a;跳转提示&#xff08;账号&#xff1a;admin&a…

C++学习之路(六)C++ 实现简单的工具箱系统命令行应用 - 示例代码拆分讲解

简单的工具箱系统示例介绍: 这个示例展示了一个简单的工具箱框架&#xff0c;它涉及了几个关键概念和知识点&#xff1a; 面向对象编程 (OOP)&#xff1a;使用了类和继承的概念。Tool 是一个纯虚类&#xff0c;CalculatorTool 和 FileReaderTool 是其派生类。 多态&#xff1…

JavaScript WebApi(二) 详解

监听事件 介绍 事件监听是一种用于在特定条件下执行代码的编程技术。在Web开发中&#xff0c;事件监听器可以用于捕获和响应用户与页面交互的各种操作&#xff0c;如点击、滚动、输入等。 事件监听的基本原理是&#xff0c;通过在特定元素上注册事件监听器&#xff0c;当事件…

Elastic Search的RestFul API入门:初识mapping

本节课旨在探讨Elasticsearch中Mapping的使用。在Elasticsearch中&#xff0c;Mapping是定义索引中字段&#xff08;Field&#xff09;的数据类型和属性的过程。它为Elasticsearch提供了一种途径&#xff0c;以解析和处理文档中的各个字段&#xff0c;以便在搜索、排序和聚合等…

【开源】基于Vue和SpringBoot的个人健康管理系统

项目编号&#xff1a; S 040 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S040&#xff0c;文末获取源码。} 项目编号&#xff1a;S040&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 健康档案模块2.2 体检档案模块2.3 健…

前端入门(三)Vue生命周期、组件原理、脚手架、插槽插件、存储、组件事件、动画、跨域与代理

文章目录 Vue生命周期Vue 组件化编程 - .vue文件非单文件组件组件的注意点组件嵌套Vue实例对象和VueComponent实例对象Js对象原型与原型链Vue与VueComponent的重要内置关系 应用单文件组件构建 Vue脚手架 - vue.cli项目文件结构组件相关高级属性引用名 - ref数据接入 - props混…

Linux常用命令——bc命令

在线Linux命令查询工具 bc 算术操作精密运算工具 补充说明 bc命令是一种支持任意精度的交互执行的计算器语言。bash内置了对整数四则运算的支持&#xff0c;但是并不支持浮点运算&#xff0c;而bc命令可以很方便的进行浮点运算&#xff0c;当然整数运算也不再话下。 语法 …

【Kotlin】内联函数

文章目录 内联函数noinline: 避免参数被内联非局部返回使用标签实现Lambda非局部返回为什么要设计noinline crossinline具体化参数类型 Kotlin中的内联函数之所以被设计出来&#xff0c;主要是为了优化Kotlin支持Lambda表达式之后所带来的开销。然而&#xff0c;在Java中我们似…