基本数据结构二叉树(1)

news2024/11/30 1:49:12

目录

1.树概念及结构

1.1树的概念

1.2 树的相关概念

1.3 树的表示

1.4 树在实际中的运用(表示文件系统的目录树结构)

2.二叉树概念及结构

2.1概念

2.2现实中的二叉树:

2.3 特殊的二叉树:

2.5 二叉树的存储结构

2. 链式存储


1.树概念及结构

1.1树的概念
树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
        •  有一个特殊的结点,称为根结点,根节点没有前驱结点
        •  除根节点外,其余结点被分成M(M>0) 个互不相交的集合 T1 T2 …… Tm ,其中每一个集合 Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0个或多个后继         
        •  因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
1.2 树的相关概念

节点的度 :一个节点含有的子树的个数称为该节点的度; 如上图: A 的为 6
叶节点或终端节点 :度为 0 的节点称为叶节点; 如上图: B C H I... 等节点为叶节点
非终端节点或分支节点 :度不为 0 的节点; 如上图: D E F G... 等节点为分支节点
双亲节点或父节点 :若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图: A B 的父节点
孩子节点或子节点 :一个节点含有的子树的根节点称为该节点的子节点; 如上图: B A 的孩子节点
兄弟节点 :具有相同父节点的节点互称为兄弟节点; 如上图: B C 是兄弟节点
树的度 :一棵树中,最大的节点的度称为树的度; 如上图:树的度为 6
节点的层次 :从根开始定义起,根为第 1 层,根的子节点为第 2 层,以此类推;
树的高度或深度 :树中节点的最大层次; 如上图:树的高度为 4
堂兄弟节点 :双亲在同一层的节点互为堂兄弟;如上图: H I 互为兄弟节点
节点的祖先 :从根到该节点所经分支上的所有节点;如上图: A 是所有节点的祖先
子孙 :以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是 A 的子孙
森林 :由 m m>0 )棵互不相交的树的集合称为森林;
1.3 树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了, 既然保存值域,也要保存结点和结点之间 的关系 ,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。
我们这里就简单的了解其中最常用的孩子兄弟表示法
typedef int DataType;
struct Node
{
 struct Node* firstChild1; // 第一个孩子结点
 struct Node* pNextBrother; // 指向其下一个兄弟结点
 DataType data; // 结点中的数据域
};

用这个方法,便能方便的表示出所有的节点(俗称左孩子右兄弟

1.4 树在实际中的运用(表示文件系统的目录树结构)

2.二叉树概念及结构

2.1概念
一棵二叉树是结点的一个有限集合,该集合 :
1. 要么 为空
2. 要么 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意 :对于任意的二叉树都是由以上几种情况 复合而成
2.2现实中的二叉树:

(我愿称这几棵树为程序员之树

2.3 特殊的二叉树:
1. 满二叉树 :一个二叉树,如果 每一个层的结点数都达到最大值 ,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K ,且结点总数是,则它就是满二叉树。
2. 完全二叉树 :完全二叉树是 效率很高 的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 1 至n的结点一一对应时称之为完全二叉树。

要注意的是满二叉树是一种特殊的完全二叉树

2.4 二叉树的性质

1. 若规定根节点的层数为 1 ,则一棵非空二叉树的 i 层上最多有2^(i-1)个结点.
2. 若规定根节点的层数为 1 ,则 深度为 h 的二叉树的最大结点数是2^h-1
.
3. 对任何一棵二叉树 , 如果度为0其叶结点个数为 , 度为2的分支结点个数为 ,则有n0 = n2 +1
4. 若规定根节点的层数为 1 ,具有 n 个结点的满二叉树的深度 h=. (ps:是log 2为底,n+1 为对数 )
5. 对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0 开始编号,则对于序号为i 的结点有:
1. i>0 i 位置节点的双亲序号: (i-1)/2 i=0 i 为根节点编号,无双亲节点
2. 2i+1<n ,左孩子序号: 2i+1 2i+1>=n 否则无左孩子
3. 2i+2<n ,右孩子序号: 2i+2 2i+2>=n 否则无右孩子
2.5 二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1. 顺序存储
顺序结构存储就是使用 数组来存储 ,一般使用数组 只适合表示完全二叉树 ,因为不是完全二叉树会有空间的浪费。而现实中使用中只有才会使用数组来存储,二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。
2. 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,高阶数据结构如红黑树等会用到三叉链。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pLeft; // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
}

// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pParent; // 指向当前节点的双亲
    struct BinTreeNode* pLeft; // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1256065.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode面试经典150题——32 串联所有单词的子串(中等+困难)

题目&#xff1a; 串联所有单词的子串(1中等) 描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串&#xff08;包括相同的字符串&…

MySQL基本SQL语句(上)

MySQL基本SQL语句&#xff08;上&#xff09; 一、客户端工具的使用 1、客户端工具mysql使用 mysql: mysql命令行工具&#xff0c;一般用来连接访问mysql数据库 选项说明-u, --username指定登录用户名-p, --password指定登录密码(注意是小写p),一定要放到最后面-h, --hostn…

【Spring】Spring事务失效问题

&#x1f4eb;作者简介&#xff1a;小明java问道之路&#xff0c;2022年度博客之星全国TOP3&#xff0c;专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化&#xff0c;文章内容兼具广度、深度、大厂技术方案&#xff0c;对待技术喜欢推理加验证&#xff0c;就职于…

我的第一次SACC之旅

今年有很多第一次&#xff0c;第一次作为“游客”参加DTCC&#xff08;中国数据库大会&#xff09;&#xff0c;第一次作为讲师参与ACDU中国行&#xff08;成都站&#xff09;&#xff0c;第一次参加OB年度发布会&#xff08;包含DBA老友会&#xff09;&#xff0c;而这次是第一…

Android获取原始图片Bitmap的宽高大小尺寸,Kotlin

Android获取原始图片Bitmap的宽高大小尺寸&#xff0c;Kotlin val options BitmapFactory.Options()options.inJustDecodeBounds trueval decodeBmp BitmapFactory.decodeResource(resources, R.mipmap.p1, options)//此时&#xff0c;decode出来的decodeBmp宽高并不是原始图…

NX二次开发UF_CURVE_ask_spline_feature 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CURVE_ask_spline_feature Defined in: uf_curve.h int UF_CURVE_ask_spline_feature(tag_t feature_id, tag_t * spline ) overview 概述 Inquire a general spline feature. …

如何深刻理解从二项式分布到泊松分布

泊松镇贴 二项分布和泊松分布的表达式 二项分布&#xff1a; P ( x k ) C n k p k ( 1 − p ) n − k P(xk) C_n^kp^k(1-p)^{n-k} P(xk)Cnk​pk(1−p)n−k 泊松分布&#xff1a; P ( x k ) λ k k ! e − λ P(xk) \frac{\lambda^k}{k!}e^{-\lambda} P(xk)k!λk​e−…

18. Python 数据处理之 Numpy

目录 1. 简介2. 安装和导入Numpy3. ndarray 对象4. 基本运算5. 索引、切片和迭代6. 条件和布尔数组7. 变换形状8. 操作数组 1. 简介 数据分析的流程概括起来主要是&#xff1a;读写、处理计算、分析建模和可视化4个部分。 Numpy 是Python 进行科学计算&#xff0c;数据分析时…

【咕咕送书 | 第六期】深入浅出阐述嵌入式虚拟机原理,实现“小而能”嵌入式虚拟机!

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《粉丝福利》 《linux深造日志》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 ⛳️ 写在前面参与规则引言一、为什么嵌入式系统需要虚拟化技术&#xff1f;1.1 专家推荐 二、本书适合谁&#x…

【Vue】@keyup.enter @v-model.trim的用法

目录 keyup.enter v-model.trim 情景一&#xff1a; 情景二&#xff1a; keyup.enter 作用&#xff1a;监听键盘回车事件 上一篇内容&#xff1a; 记事本 https://blog.csdn.net/m0_67930426/article/details/134630834?spm1001.2014.3001.5502 这里有个添加任务的功能&…

ESP32控制数码管实现数字叠加案例

经过了几个小时的接线和代码实现终于搞定了代码&#xff0c;贴出来大家参考下 import machine import time# 定义4个Led的引脚 led1 machine.Pin(5,machine.Pin.OUT) led2 machine.Pin(18,machine.Pin.OUT) led3 machine.Pin(19,machine.Pin.OUT) led4 machine.Pin(21,mac…

i社为什么不出游戏了?

I社&#xff0c;即国际知名的游戏公司&#xff0c;近来为何鲜有新游问世&#xff1f;曾经风靡一时的游戏开发者&#xff0c;如今为何陷入了沉寂&#xff1f;这其中的种种原因&#xff0c;值得我们深入剖析。 首先&#xff0c;I社近期的沉寂可能与其内部管理层的调整和战略规划…

VUE简易购物车程序

目录 效果预览图 完整代码 效果预览图 完整代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>…

3.前端--HTML标签-文本图像链接【2023.11.25】

1.HTML常用标签(文本图像链接&#xff09; 文本标签 标题 <h1> - <h6> 段落<p> 我是一个段落标签 </p> 换行 <br /> <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta ht…

第一百八十一回 如何绘制阴影效果

文章目录 1. 概念介绍2. 使用方法2.1 SegmentedButton2.2 ButtonSegment 3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 1. 概念介绍 我们在本章回中介绍的SegmentedButton组件是一种分段式按钮&#xff0c;它把多个按钮连接成一组显示&#xff0c;组内再对不同的按钮进…

Day42力扣打卡

打卡记录 统计子串中的唯一字符&#xff08;找规律&#xff09; 链接 大佬的题解 class Solution:def uniqueLetterString(self, s: str) -> int:ans total 0last0, last1 {}, {}for i, c in enumerate(s):total i - 2 * last0.get(c, -1) last1.get(c, -1)ans tot…

【Java】循环语句练习

文章目录 1. 计算5的阶乘2. 计算 1! 2! 3! 4! 5!3. 数字9 出现的次数4. 判定素数5. 求1-100之间的素数6. 求2个整数的最大公约数7. 计算分数的值8. 模拟登陆9. 输出乘法口诀表10. 求出0&#xff5e;999之间的所有“水仙花数”并输出11. 猜数字游戏&#x1f648; 1. 计算5的…

GWAS:plink进行meta分析

之前教程提到过Metal是可以做Meta分析&#xff0c;除了Metal&#xff0c;PLINK也可以进行Meta分析。 命令如下所示&#xff1a; plink --meta-analysis gwas1.plink gwas2.plink gwas3.plink logscale qt --meta-analysis-snp-field SNP --meta-analysis-chr-field CHR --me…

C++初识类和对象

前言 上一期我们介绍了一些C入门的基础知识&#xff0c;本期我们来介绍面向对象。初步认识一下面向对象和面向过程、类、以及封装&#xff01; 本期内容介绍 面向过程和面向对象 类的引入 类的定义 类的访问限定符和封装 类的作用域 类的实例化 类对象模型 this指针 一、面向…

从零开始学习管道:管道程序的优化和文件描述符继承问题

&#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;Linux &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&#x1f349;留言 本博客主要内容管道后续的完善&#xff0c;以及解决管道继承多个文件描…