Arduino驱动温湿度气压光照传感器模块

news2024/11/27 13:37:51

目录

  • 一、简介
  • 二、原理图
  • 三、使用方法
  • 四、实验现象

一、简介

在这里插入图片描述

点击图片购买

HTU21D特性:HTU21D基于法国Humirel公司高性能的湿度感应元件制成,传感器输出标准IIC格式。同时具有很高的温度精度和湿度精度。HTU21专为低功耗小体积应用设计,具有很快的响应速度,极低的功耗,抗干扰能力强。

产品参数
工作电压:1.5-3.6V
功率:≤2.7uW
通信方式:IIC

BMP180特性
BMP180是一款高精度、小体积、超低能耗的压力传感器,内部集成了压阻式、ADC、EEPRM控制器、IIC控制器,绝对精度最低可以达到0.03hPa,并且耗电极低,只有3uA,可以通过IIC总线直接与各种微处理器相连。可以测量气压和高度。

产品参数
工作电压:1.8-3.6V
工作温度:-40℃~85℃
通信方式:IIC可达3.4MHz
压力范围:300-1100hPa

750FVI特性:750FVI是一款数字输出型环境光照强度传感器,内置16bitAD转换器,接近与视觉灵敏度的光谱灵敏度特性,光源依赖性弱(白炽灯,荧光灯,卤素灯,白光LED,日光灯),可对广泛的亮度进行一勒克斯的高精度测定,可以根据收集的光照强度数据来调整液晶或者键盘背景灯的亮度。

产品参数
工作电压:3-3.6V
工作温度:-40℃~85℃
光照强度范围:0-65535lx
通信方式:IIC
最小误差:±20%

二、原理图

在这里插入图片描述

三、使用方法

实验准备

温湿度气压光照传感器模块1个
原装正版Arduino uno r3开发板1个
USB2.0打印机数据线高速方口连接转接线 A公对B公1条
杜邦线若干

接线

Arduino温湿度气压光照传感器模块
3.3V3.3V
GNDGND
SCLSCL
SDASDA

如下图所示
在这里插入图片描述
程序下载
测量温度和湿度

* 
 HTU21D Humidity Sensor Example Code
 By: Nathan Seidle
 SparkFun Electronics
 Date: September 15th, 2013
 License: This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license).
 
 Uses the HTU21D library to display the current humidity and temperature
 
 Open serial monitor at 9600 baud to see readings. Errors 998 if not sensor is detected. Error 999 if CRC is bad.
  
 Hardware Connections (Breakoutboard to Arduino):
 -VCC = 3.3V
 -GND = GND
 -SDA = A4 (use inline 10k resistor if your board is 5V)
 -SCL = A5 (use inline 10k resistor if your board is 5V)

 */

#include <Wire.h>
#include "HTU21D.h"

//Create an instance of the object
HTU21D myHumidity;

void setup()
{
  Serial.begin(9600);
  Serial.println("HTU21D Example!");

  myHumidity.begin();
}

void loop()
{
  float humd = myHumidity.readHumidity();
  float temp = myHumidity.readTemperature();

  Serial.print("Time:");
  Serial.print(millis());
  Serial.print(" Temperature:");
  Serial.print(temp, 1);
  Serial.print("C");
  Serial.print(" Humidity:");
  Serial.print(humd, 1);
  Serial.print("%");

  Serial.println();
  delay(1000);
}

测量温湿度和压力

/* SFE_BMP180 library example sketch

This sketch shows how to use the SFE_BMP180 library to read the
Bosch BMP180 barometric pressure sensor.
https://www.sparkfun.com/products/11824

Like most pressure sensors, the BMP180 measures absolute pressure.
This is the actual ambient pressure seen by the device, which will
vary with both altitude and weather.

Before taking a pressure reading you must take a temparture reading.
This is done with startTemperature() and getTemperature().
The result is in degrees C.

Once you have a temperature reading, you can take a pressure reading.
This is done with startPressure() and getPressure().
The result is in millibar (mb) aka hectopascals (hPa).

If you'll be monitoring weather patterns, you will probably want to
remove the effects of altitude. This will produce readings that can
be compared to the published pressure readings from other locations.
To do this, use the sealevel() function. You will need to provide
the known altitude at which the pressure was measured.

If you want to measure altitude, you will need to know the pressure
at a baseline altitude. This can be average sealevel pressure, or
a previous pressure reading at your altitude, in which case
subsequent altitude readings will be + or - the initial baseline.
This is done with the altitude() function.

Hardware connections:

- (GND) to GND
+ (VDD) to 3.3V

(WARNING: do not connect + to 5V or the sensor will be damaged!)

You will also need to connect the I2C pins (SCL and SDA) to your
Arduino. The pins are different on different Arduinos:

Any Arduino pins labeled:  SDA  SCL
Uno, Redboard, Pro:        A4   A5
Mega2560, Due:             20   21
Leonardo:                   2    3

Leave the IO (VDDIO) pin unconnected. This pin is for connecting
the BMP180 to systems with lower logic levels such as 1.8V

Have fun! -Your friends at SparkFun.

The SFE_BMP180 library uses floating-point equations developed by the
Weather Station Data Logger project: http://wmrx00.sourceforge.net/

Our example code uses the "beerware" license. You can do anything
you like with this code. No really, anything. If you find it useful,
buy me a beer someday.

V10 Mike Grusin, SparkFun Electronics 10/24/2013
*/

// Your sketch must #include this library, and the Wire library.
// (Wire is a standard library included with Arduino.):

#include <SFE_BMP180.h>
#include <Wire.h>

// You will need to create an SFE_BMP180 object, here called "pressure":

SFE_BMP180 pressure;

#define ALTITUDE 1655.0 // Altitude of SparkFun's HQ in Boulder, CO. in meters

void setup()
{
  Serial.begin(9600);
  Serial.println("REBOOT");

  // Initialize the sensor (it is important to get calibration values stored on the device).

  if (pressure.begin())
    Serial.println("BMP180 init success");
  else
  {
    // Oops, something went wrong, this is usually a connection problem,
    // see the comments at the top of this sketch for the proper connections.

    Serial.println("BMP180 init fail\n\n");
    while(1); // Pause forever.
  }
}

void loop()
{
  char status;
  double T,P,p0,a;

  // Loop here getting pressure readings every 10 seconds.

  // If you want sea-level-compensated pressure, as used in weather reports,
  // you will need to know the altitude at which your measurements are taken.
  // We're using a constant called ALTITUDE in this sketch:
  
  Serial.println();
  Serial.print("provided altitude: ");
  Serial.print(ALTITUDE,0);
  Serial.print(" meters, ");
  Serial.print(ALTITUDE*3.28084,0);
  Serial.println(" feet");
  
  // If you want to measure altitude, and not pressure, you will instead need
  // to provide a known baseline pressure. This is shown at the end of the sketch.

  // You must first get a temperature measurement to perform a pressure reading.
  
  // Start a temperature measurement:
  // If request is successful, the number of ms to wait is returned.
  // If request is unsuccessful, 0 is returned.

  status = pressure.startTemperature();
  if (status != 0)
  {
    // Wait for the measurement to complete:
    delay(status);

    // Retrieve the completed temperature measurement:
    // Note that the measurement is stored in the variable T.
    // Function returns 1 if successful, 0 if failure.

    status = pressure.getTemperature(T);
    if (status != 0)
    {
      // Print out the measurement:
      Serial.print("temperature: ");
      Serial.print(T,2);
      Serial.print(" deg C, ");
      Serial.print((9.0/5.0)*T+32.0,2);
      Serial.println(" deg F");
      
      // Start a pressure measurement:
      // The parameter is the oversampling setting, from 0 to 3 (highest res, longest wait).
      // If request is successful, the number of ms to wait is returned.
      // If request is unsuccessful, 0 is returned.

      status = pressure.startPressure(3);
      if (status != 0)
      {
        // Wait for the measurement to complete:
        delay(status);

        // Retrieve the completed pressure measurement:
        // Note that the measurement is stored in the variable P.
        // Note also that the function requires the previous temperature measurement (T).
        // (If temperature is stable, you can do one temperature measurement for a number of pressure measurements.)
        // Function returns 1 if successful, 0 if failure.

        status = pressure.getPressure(P,T);
        if (status != 0)
        {
          // Print out the measurement:
          Serial.print("absolute pressure: ");
          Serial.print(P,2);
          Serial.print(" mb, ");
          Serial.print(P*0.0295333727,2);
          Serial.println(" inHg");

          // The pressure sensor returns abolute pressure, which varies with altitude.
          // To remove the effects of altitude, use the sealevel function and your current altitude.
          // This number is commonly used in weather reports.
          // Parameters: P = absolute pressure in mb, ALTITUDE = current altitude in m.
          // Result: p0 = sea-level compensated pressure in mb

          p0 = pressure.sealevel(P,ALTITUDE); // we're at 1655 meters (Boulder, CO)
          Serial.print("relative (sea-level) pressure: ");
          Serial.print(p0,2);
          Serial.print(" mb, ");
          Serial.print(p0*0.0295333727,2);
          Serial.println(" inHg");

          // On the other hand, if you want to determine your altitude from the pressure reading,
          // use the altitude function along with a baseline pressure (sea-level or other).
          // Parameters: P = absolute pressure in mb, p0 = baseline pressure in mb.
          // Result: a = altitude in m.

          a = pressure.altitude(P,p0);
          Serial.print("computed altitude: ");
          Serial.print(a,0);
          Serial.print(" meters, ");
          Serial.print(a*3.28084,0);
          Serial.println(" feet");
        }
        else Serial.println("error retrieving pressure measurement\n");
      }
      else Serial.println("error starting pressure measurement\n");
    }
    else Serial.println("error retrieving temperature measurement\n");
  }
  else Serial.println("error starting temperature measurement\n");

  delay(5000);  // Pause for 5 seconds.
}

四、实验现象

在这里插入图片描述
测量温度为28℃,湿度为35.7% 。
在这里插入图片描述
测量高度为1655meters,温度为26.8℃,大气压为1017.71mb 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1254693.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3. 迷宫问题

题目 迷宫有一个入口&#xff0c;一个出口。一个人从入口走进迷宫&#xff0c;目标是找到出口。阴影部分和迷宫的外框为墙&#xff0c;每一步走一格&#xff0c;每格有四个可走的方向&#xff0c;探索顺序为地图方向&#xff1a;南&#xff08;下&#xff09;、东&#xff08;右…

【Spring整合MyBatis】Spring整合MyBatis的具体方法

在前面写的博客中&#xff0c;介绍了MyBatis通过配置方式和通过注解方式写的方法&#xff1a; 【Spring集成MyBatis】MyBatis诞生及代码快速入门&#xff08;非注解开发&#xff09;【Spring集成MyBatis】MyBatis的Dao层实现&#xff08;基于配置&#xff0c;非注解开发&#…

【libGDX】立方体手动旋转

1 前言 本文主要介绍使用 libGDX 绘制立方体&#xff0c;并实现手动触摸事件控制立方体旋转。 为方便控制触摸旋转&#xff0c;并提高渲染性能&#xff0c;我们通过改变相机的位置和姿态实现立方体旋转效果。 读者如果对 libGDX 不太熟悉&#xff0c;请回顾以下内容。 使用Me…

Re55:读论文 Entities as Experts: Sparse Memory Access with Entity Supervision

诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称&#xff1a;Entities as Experts: Sparse Memory Access with Entity Supervision 模型名称&#xff1a;Entities as Experts (EaE) ArXiv网址&#xff1a;https://arxiv.org/abs/2004.07202 本文…

轻松实现文件按数量平均分类,高效整理并自动新建文件夹保存“

你是否曾经因为文件数量过多&#xff0c;整理起来繁琐而感到烦恼&#xff1f;是否曾经为了新建文件夹而手动一个一个进行创建&#xff0c;费时又费力&#xff1f;现在&#xff0c;我们的智能文件管理工具将为你解决这些问题&#xff01; 首先第一步&#xff0c;我们要进入文件…

超详细csapp-linklab之第一阶段“输出学号”实验报告

该实验的主题是“链接”。 准备工具 虚拟机&#xff0c;Ubuntu32位&#xff0c;hexedit&#xff0c;main.o&#xff0c;phase1.o&#xff0c;该实验的C代码框架如下 // main.c void (*phase)(); /*初始化为0*/int main( int argc, const char* argv[] ) {if ( phase )(*ph…

小程序项目:springboot+vue基本微信小程序的宠物领养系统

项目介绍 当今科技发展迅速&#xff0c;交通环境也变得越来越复杂。人们的出行方式变得多元化&#xff0c;这给视障人士带来了一定的困扰。而导盲犬可以帮助视障人士外出行走&#xff0c;提高他们的生活质量。在我国&#xff0c;导盲犬的数量远远少于视障人士的数量。由于导盲…

FreeRTOS深入教程(中断管理)

文章目录 前言一、为什么要为中断设计一套API二、两套函数区别对比三、两类中断四、FreeRTOS中SYSTICK和PendSV中断的作用总结 前言 本篇文章来分析FreeRTOS中的中断&#xff0c;中断在FreeRTOS中也是非常重要的&#xff0c;那么这篇文章将带大家来学习一下FreeRTOS中的中断处…

文件搜索工具HoudahSpot mac中文版特点

HoudahSpot mac是一款文件搜索工具&#xff0c;它可以帮助用户快速准确地找到文件和文件夹&#xff0c;支持高级搜索和过滤&#xff0c;同时提供了多种视图和操作选项&#xff0c;方便用户进行文件管理和整理。 HoudahSpot mac软件特点 高级搜索和过滤功能&#xff1a;软件支持…

[pyqt5]pyqt5设置窗口背景图片后上面所有图片都会变成和背景图片一样

pyqt5的控件所有都是集成widget&#xff0c;窗体设置背景图片后控件背景也会跟着改变&#xff0c;此时有2个办法。第一个办法显然我们可以换成其他方式设置窗口背景图片&#xff0c;而不是使用styleSheet样式表&#xff0c;网上有很多其他方法。还有个办法就是仍然用styleSheet…

vsVode C++开发远程虚拟机工程配置

在使用VS Code进行C/C的开发过程中&#xff0c;有三个至关重要的配置文件&#xff0c;分别是 tasks.json, launch.json 和 c_cpp_properties.json 1. tasks.json tasks.json 是在 vscode 中辅助程序编译的模块&#xff0c;可以代你执行类似于在命令行输入 “gcc hello.c -o h…

在mysql存储过程中间部分,使用游标遍历动态结果集(游标动态传参使用)

mysql游标动态传参实现&#xff08;动态游标&#xff09; 1.问题2.需求描述3.实现3.1.使用3.2.代码&#xff08;直接看这都可以&#xff09; 1.问题 众所周知&#xff0c;mysql存储过程功能是没有oracle的包功能强大的&#xff0c;但是在去O的趋势下&#xff0c;mysql存储过程的…

17. Python 数据库操作之MySQL和SQLite实例

目录 1. 简介2. 使用PyMySQL2. 使用SQLite 1. 简介 数据库种类繁多&#xff0c;每种数据库的对外接口实现各不相同&#xff0c;为了方便对数据库进行统一的操作&#xff0c;大部分编程语言都提供了标准化的数据库接口&#xff0c;用户不需要了解每种数据的接口实现细节&#x…

2018年5月23日 Go生态洞察:更新Go行为准则

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

智能优化算法应用:基于蚁狮算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于蚁狮算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于蚁狮算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蚁狮算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

ElasticSearch学习笔记(狂神说)

ElasticSearch学习笔记&#xff08;狂神说&#xff09; 视频地址&#xff1a;https://www.bilibili.com/video/BV17a4y1x7zq 在学习ElasticSearch之前&#xff0c;先简单了解一下Lucene&#xff1a; Doug Cutting开发是apache软件基金会 jakarta项目组的一个子项目是一个开放…

乘波前行的问题

1.问题&#xff1a; 考虑两个信号叠加在一起&#xff0c;比如&#xff0c;一个是工频信号50Hz&#xff0c;一个是叠加的高频信号比如有3KHz&#xff0c;简单起见&#xff0c;两个信号都是幅值固定的标准的正弦波&#xff0c;现在我们期望得到那个高频信号&#xff0c;相对工频…

Seurat Tutorial 1:标准分析流程,基于 PBMC 3K 数据集

目录 1 设置 Seurat 对象2 标准预处理工作流程 2.1 QC 和选择细胞进行进一步分析3 数据归一化4 识别高变特征&#xff08;特征选择&#xff09;5 标准化数据6 执行线性降维7 确定数据集的维度8 细胞聚类9 运行非线性降维 (UMAP/tSNE)10 寻找差异表达特征&#xff08;cluster b…

数据结构(超详细讲解!!)第二十五节 线索二叉树

1.线索二叉树的定义和结构 问题的提出&#xff1a; 通过遍历二叉树可得到结点的一个线性序列&#xff0c;在线性序列中&#xff0c;很容易求得某个结点的直接前驱和后继。但是在二叉树上只能找到结点的左孩子、右孩子&#xff0c;结点的前驱和后继只有在遍历过程中才能得到…

计算机视觉面试题-02

图像处理和计算机视觉基础 什么是图像滤波&#xff1f;有哪些常见的图像滤波器&#xff1f; 图像滤波是一种通过在图像上应用滤波器&#xff08;卷积核&#xff09;来改变图像外观或提取图像特征的图像处理技术。滤波器通常是一个小的矩阵&#xff0c;通过在图像上进行卷积…