elasticsearc DSL查询文档

news2024/11/29 10:36:45

文章目录

  • DSL查询文档
    • DSL查询分类
    • 全文检索查询
      • 使用场景
      • 基本语法
      • 示例
    • 精准查询
      • term查询
      • range查询
      • 总结
    • 地理坐标查询
      • 矩形范围查询
      • 附近查询
    • 复合查询
      • 相关性算分
      • 算分函数查询
        • 1)语法说明
        • 2)示例
        • 3)小结
      • 布尔查询
        • 1)语法示例:
        • 2)示例
        • 3)小结
  • 搜索结果处理
    • 排序
      • 普通字段排序
      • 地理坐标排序
    • 分页
      • 基本的分页
      • 深度分页问题
      • 小结
    • 高亮
      • 高亮原理
      • 实现高亮

DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

全文检索查询

使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

示例

match查询示例:

在这里插入图片描述

multi_match查询示例:
在这里插入图片描述

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

在这里插入图片描述

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

外链图片转存

range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

示例:

在这里插入图片描述

总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:
在这里插入图片描述

附近的车:

在这里插入图片描述

矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

在这里插入图片描述

发现共有47家酒店。

然后把半径缩短到3公里:
在这里插入图片描述

可以发现,搜索到的酒店数量减少到了5家。

复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

elasticsearch新版采用的算法为BM25算法,公式如下:
在这里插入图片描述

算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
在这里插入图片描述

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

在这里插入图片描述

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果
2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}
3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

在这里插入图片描述

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分
1)语法示例:
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}
2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

在这里插入图片描述

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

在这里插入图片描述

地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

在这里插入图片描述

分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

基本的分页

分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

在这里插入图片描述

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

在这里插入图片描述

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

高亮

高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

在这里插入图片描述

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签
  • 2)页面给<em>标签编写CSS样式

实现高亮

高亮的语法

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1253946.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言公交车之谜(ZZULIOJ1232:公交车之谜)

题目描述 听说郑州紫荆山公园有英语口语角&#xff0c;还有很多外国人呢。为了和老外对上几句&#xff0c;这周六早晨birdfly拉上同伴早早的就坐上了72路公交从学校向紫荆山进发。一路上没事干&#xff0c;birdfly开始思考一个问题。 从学校到紫荆山公园共有n(1<n<20)站路…

LeetCode Hot100 33.搜索旋转排序数组

题目&#xff1a; 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], ..., nums[n-1], nu…

Docker Swarm总结+基础、集群搭建维护、安全以及集群容灾(1/4)

博主介绍&#xff1a;Java领域优质创作者,博客之星城市赛道TOP20、专注于前端流行技术框架、Java后端技术领域、项目实战运维以及GIS地理信息领域。 &#x1f345;文末获取源码下载地址&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb;…

C#,《小白学程序》第二十课:大数的加法(BigInteger Add)

大数的&#xff08;加减乘除&#xff09;四则运算、阶乘运算。 乘法计算包括小学生算法、Karatsuba和Toom-Cook3算法。 重复了部分 19 课的代码。 1 文本格式 using System; using System.Linq; using System.Text; using System.Collections.Generic; /// <summary>…

网络视频播放卡顿原因分析

一、问题描述 某项目通过拉摄像机rtsp流转rtmp/http-flv/ws-flv的方案&#xff0c;使用户可以在网页中观看摄像机的视频画面。在 观看视频时偶发出现卡顿现象。 二、卡顿现象分析和解决 此问题涉及的原因较多&#xff0c;所以得考虑各环节的问题可能性&#xff0c;并根据现场实…

C语言盐水的故事(ZZULIOJ1214:盐水的故事)

题目描述 挂盐水的时候&#xff0c;如果滴起来有规律&#xff0c;先是滴一滴&#xff0c;停一下&#xff1b;然后滴二滴&#xff0c;停一 下&#xff1b;再滴三滴&#xff0c;停一下...&#xff0c;现在有一个问题&#xff1a;这瓶盐水一共有VUL毫升&#xff0c;每一滴是D毫升&…

黑马点评-Feed流的实现方案,基于推拉结合模式实现笔记推送

Feed流实现方案 我们关注了博主之后,当用户发布了动态后我们应该把这些数据推送给粉丝,关注推送也叫作Feed(投喂)流,通过无限下拉刷新获取新的信息 传统的模式内容检索: 粉丝需要主动通过搜索引擎或者是其他方式去查找想看的内容新型Feed流的效果: 系统分析用户到底想看什么,…

CSDN C4模拟题

《计算机常识》 进制转换 一、任务目标 理解二进制/八进制/十进制/十六进制的原理 掌握各种不同的进制间的转换方法 二、任务背景 进制转换是软件工程师的必备技能,也是C1阶段的计算机通识模块之一,实际开发中的多媒体数据采集、分割、压缩、编解转码、传输、纠错、合并等…

队列详解(C语言实现)

文章目录 写在前面1 队列的定义2 队列的初始化3 数据入队列4 数据出队列5 获取队头元素6 获取队尾元素7 获取队列元素个数8 判断队列是否为空8 队列的销毁 写在前面 本片文章详细介绍了另外两种存储逻辑关系为 “一对一” 的数据结构——栈和队列中的队列&#xff0c;并使用C语…

WorkPlus稳定服务助力行业千万用户,打造无界沟通协作平台

在企业移动数字化领域&#xff0c;WorkPlus以其十年如一日的研发实力和千万级用户案例&#xff0c;成为众多企业首选的移动数字化平台。究竟是什么样的力量支撑着WorkPlus在市场上占据如此重要的地位呢&#xff1f;接下来&#xff0c;让我们一起揭开WorkPlus的神秘面纱&#xf…

【开源】基于Vue.js的陕西非物质文化遗产网站

文末获取源码&#xff0c;项目编号&#xff1a; S 065 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S065。} 文末获取源码&#xff0c;项目编号&#xff1a;S065。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 设计目标2.2 研究内容2.3 研究方法与…

网络唤醒原理浅析(Wake On LAN)

原理 将唤醒魔术包发送的被唤醒机器的网卡上&#xff0c;魔术包指AMD公司开发的唤醒数据包&#xff0c;具有远程唤醒的网卡都支持这个标准&#xff0c;用16进制表示如下&#xff1a; 6对“FF”前缀16次重复MAC地址,举个例子假如我的网卡MAC地址是&#xff1a;AA:BB:CC:DD:EE:…

现代 C++ 函数式编程指南

现代 C 函数式编程指南 什么是 柯里化 &#xff08;Curry&#xff09;什么是 部分应用 &#xff08;Partial Application&#xff09; 二元函数 &#xff08;Partial Application&#xff09;参数排序 &#xff08;Partial Application&#xff09; 应用场景 计算碳衰减周期求年…

Shell脚本:Linux Shell脚本学习指南(第二部分Shell编程)三

第二部分&#xff1a;Shell编程&#xff08;三&#xff09; 二十一、Shell declare和typeset命令&#xff1a;设置变量属性 declare 和 typeset 都是 Shell 内建命令&#xff0c;它们的用法相同&#xff0c;都用来设置变量的属性。不过 typeset 已经被弃用了&#xff0c;建议…

MySql之索引,视图,事务以及存储过程举例详解

一.数据准备 数据准备可参考下面的链接中的数据准备步骤 MySql之内连接&#xff0c;外连接&#xff0c;左连接&#xff0c;右连接以及子查询举例详解-CSDN博客 &#xff08;如有问题可在评论区留言&#xff09; 二.存储过程 1.定义 存储过程 PROCEDURE &#xff0c;也翻译…

Leetcode—167.两数之和 II - 输入有序数组【中等】

2023每日刷题&#xff08;四十一&#xff09; Leetcode—167.两数之和 II - 输入有序数组 实现代码 /*** Note: The returned array must be malloced, assume caller calls free().*/ int* twoSum(int* numbers, int numbersSize, int target, int* returnSize) {*returnSiz…

过渡曲线的构造之平面PH曲线

平面PH曲线的构造及其相应性质 平面PH曲线的构造及其相应性质PH曲线理论三次PH曲线的构造及性质四次PH曲线的构造及性质五次PH曲线的构造及性质非尖点五次PH曲线尖点五次PH曲线 参考文献 平面PH曲线的构造及其相应性质 过渡曲线常需要满足在连接点处位置连续、曲率连续以及切线…

Docker Swarm总结+CI/CD Devops、gitlab、sonarqube以及harbor的安装集成配置(3/4)

博主介绍&#xff1a;Java领域优质创作者,博客之星城市赛道TOP20、专注于前端流行技术框架、Java后端技术领域、项目实战运维以及GIS地理信息领域。 &#x1f345;文末获取源码下载地址&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb;…

makefile编写练习

makefile编写练习 OVERVIEW makefile编写练习文件结构直接编译整个项目并运行将项目制作成为静态库将项目制作成为动态库 编写makefile文件来编译带头文件的程序&#xff0c; 文件结构 初始项目文件结构&#xff0c;如下所示&#xff1a; #ifndef ADD_HPP #define ADD_HPPint…

栈详解(C语言)

文章目录 写在前面1 栈的定义2 栈的初始化3 数据入栈4 数据出栈5 获取栈顶元素6 获取栈元素个数7 判断栈是否为空8 栈的销毁 写在前面 本片文章详细介绍了另外两种存储逻辑关系为 “一对一” 的数据结构——栈和队列中的栈&#xff0c;并使用C语言实现了数组栈。 栈C语言实现源…