【腾讯云云上实验室-向量数据库】用向量数据库——实现高效文本检索功能

news2024/11/16 23:51:30

文章目录

  • 前言
  • Tencent Cloud VectorDB 简介
  • Tencent Cloud VectorDB 使用实战
    • 申请腾讯云向量数据库
    • 腾讯云向量数据库使用步骤
    • 腾讯云向量数据库实现文本检索
  • 结论和建议


前言

想必各位开发者一定使用过关系型数据库MySQL去存储我们的项目的数据,也有部分人使用过非关系型数据库Redis去存储我们的一些热点数据作为缓存,提高我们系统的响应速度,减小我们MySQL的压力。那么你有听说过向量数据库吗?知道向量数据库是用来做什么的吗?

向量数据库用来存储非结构化数据,例如,文档,图片,视频,音频和纯文本等,在保证1%信息完整的情况下,通过向量嵌入函数来精准描写非结构化数据的特征,从而提供查询、删除、修改、元数据过滤等操作。而像Mysql这样传统的数据库根本无法完成这些操作。而腾讯云向量数据库(Tencent Cloud VectorDB) 是一款专为存储、检索和分析多维向量数据而设计的全托管式企业级分布式数据库服务,就让我们一起来学习一起吧!

Tencent Cloud VectorDB 简介

向量数据库是一种创新性的数据存储系统,其独特之处在于采用高维向量来表示数据的特征或属性。这些高维向量的维度数量范围广泛,从几十到几千,具体取决于数据的复杂性和细致程度。与此同时,该数据库集成了CRUD操作、元数据过滤和水平扩展等多项功能。这些向量通常是通过对原始数据(例如文本、图像、音频、视频等)应用某种变换或嵌入函数来生成的。这些嵌入函数可能基于各种方法,包括机器学习模型、词嵌入和特征提取算法等。
在这里插入图片描述

向量数据库利用嵌入模型将数据转化为高维向量后,这些向量被存储在数据库中。在用户进行查询时,系统将用户提出的问题转换成高维向量,通过在数据库中计算高维空间中两个向量的距离,迅速检索出最相似的向量,并将相应的数据返回给用户。
向量数据库的显著优势在于其能够通过向量距离或相似性进行快速、准确的相似性搜索和检索。这使得用户能够根据语义或上下文含义查找最相关的数据,而不受传统数据库中基于精确匹配或预定义标准的限制。

该数据库将向量嵌入巧妙地整合在一起,使得我们能够比较任何向量与搜索查询的向量或其他向量之间的相似度。同时,它还支持CRUD操作和元数据过滤。通过将传统数据库功能与搜索和比较向量的能力相结合,向量数据库成为一个极具威力的工具。其在相似性搜索方面表现出色,通常被称为“向量搜索”技术。

腾讯云向量数据库(Tencent Cloud VectorDB) 是一款专为存储、检索和分析多维向量数据而设计的全托管式企业级分布式数据库服务。其独特之处在于支持多种索引类型和相似度计算方法,拥有卓越的性能优势,包括高QPS(每秒查询率)、毫秒级查询延迟,以及单索引支持数亿级向量数据规模。通过简单易用的可视化界面,用户可以快速创建数据库实例,进行数据操作,执行查询操作,并配置嵌入式数据转换,提供更广泛的数据处理能力。该数据库适用于多种场景,如构建大型知识库、推荐系统、智能问答系统以及文本/图像检索任务,为企业提供了强大的工具,助力各种应用场景下的高效数据管理和智能应用实现。
在这里插入图片描述
腾讯云向量数据库 Tencent Cloud VectorDB 基于腾讯集团每日处理千亿次检索的向量引擎 OLAMA,底层采用 Raft 分布式存储,通过 Master 节点进行集群管理和调度,实现系统的高效运行。同时,腾讯云向量数据库支持设置多分片和多副本,进一步提升了负载均衡能力,使得向量数据库能够在处理海量向量数据的同时,实现高性能、高可扩展性和高容灾能力。
在这里插入图片描述

Tencent Cloud VectorDB 使用实战

申请腾讯云向量数据库

点击下面的链接或者腾讯云搜索向量数据库,可用微信进行扫码实名认证登录,腾讯云向量数据库免费实例领取链接:点击申请
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
以上我们就申请好了腾讯云向量数据库,然后我们可以进行一些实操。

腾讯云向量数据库使用步骤

领取资源后可创建一个向量数据库,点击新建
在这里插入图片描述
默认没有网络和安全组,请点击新建私用网络和自定义安全组进行新建
在这里插入图片描述
下面是创建私有网络
在这里插入图片描述
下面是创建安全组
在这里插入图片描述
创建向量数据库后需要开启外网访问才可登录并远程控制
在这里插入图片描述
账号名为root 密码为向量数据库实例中复制API 密钥
在这里插入图片描述
在这里插入图片描述
点击新建数据库
在这里插入图片描述
有两种模式:一种是不开启embedding ,一种是开启embedding
在这里插入图片描述
创建了两个数据库一个时一种是开启embedding ,一种是不开启embedding,分别是test_1和test_2 表
在这里插入图片描述

{
    "database": "gwx_vector",
    "collection": "test_1",
    "buildIndex": true,
    "documents": [
{
            "id": "0001",
            "types": "基础数学",
            "infos": "1+1=2",
            "text":"小学生数学课程"
        },
        {
            "id": "0002",
            "types": "初中数学",
            "infos": "x+y=22",
            "text":"初中生学习课程"
        },
        {
            "id": "0003",
            "types": "高中数学",
            "infos": "f(x)",
            "text":"高中生学习课程"
        }
    ]
}

将上面的代码分别放入test_1进行数据操作然后执行,可在精准查询和相似度查询对向量数据库里面的数据进行检索

腾讯云向量数据库实现文本检索

文本检索任务是指在大规模文本数据库中搜索出与指定图像最相似的结果,在检索时使用到的文本特征可以存储在向量数据库中,通过高性能的索引存储实现高效的相似度计算,进而返回和检索内容相匹配的文本结果。
在这里插入图片描述
如果想用IDE 通腾讯向量数据库进行开发则可通过python 或java 开发,下面用python 进行演示
环境依赖安装:

	pip install tcvectordb

或者通过 https://github.com/Tencent/vectordatabase-sdk-python 链接源码安装

首先在腾讯云上面购买向量数据库服务器后,在本地创建VectorDBClient,一个向量数据库的客户端对象,用于与向量数据库服务器连接并进行数据交互。
具体代码如下:

import tcvectordb
from tcvectordb.model.enum import FieldType, IndexType, MetricType, ReadConsistency

#create a database client object
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)

然后创建数据库,并查询集群中所有的向量数据库。

read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
# 创建数据库
client.create_database('db-test')
client.create_database('db_test0')
client.create_database('db_test1')
# list databases
db_list = client.list_databases()

for db in db_list:
         print(db.database_name)

下面写入原始文本数据:

import tcvectordb
from tcvectordb.model.collection import Embedding, UpdateQuery
from tcvectordb.model.document import Document, Filter, SearchParams
from tcvectordb.model.enum import FieldType, IndexType, MetricType, EmbeddingModel
from tcvectordb.model.index import Index, VectorIndex, FilterIndex, HNSWParams, IVFFLATParams
from tcvectordb.model.enum import FieldType, IndexType, MetricType, ReadConsistency
#create a database client object
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
# 指定写入原始文本的数据库与集合
db = client.database('db-test')
coll = db.collection('book-emb')
# 写入数据。
# 参数 build_index 为 True,指写入数据同时重新创建索引。
res = coll.upsert(
documents=[
Document(id='0001', text="话说天下大势,分久必合,合久必分。", author='罗贯中', bookName='三国演义', page=21),
Document(id='0002', text="混沌未分天地乱,茫茫渺渺无人间。", author='吴承恩', bookName='西游记', page=22),
Document(id='0003', text="甄士隐梦幻识通灵,贾雨村风尘怀闺秀。", author='曹雪芹', bookName='红楼梦', page=23) 
],
build_index=True
)

下面进行查询
1、基于精确匹配的查询方式:query() 用于精确查找与查询条件完全匹配的向量,具体支持如下功能。
支持根据主键 id(Document ID),搭配自定义的标量字段的 Filter 表达式一并检索。
支持指定查询起始位置 offset 和返回数量 limit,实现数据 SCAN 能力。

#create a database client object
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
db = client.database('db-test')
coll = db.collection('book-vector')
# Set filter
filter_param=Filter(Filter.In("bookName",["三国演义", "西游记"]))
# query 
doc_list = coll.query(document_ids=['0001','0002','0003'], retrieve_vector=True, filter=filter_param, limit=3, offset=0, output_fields=['bookName','author'])
for doc in doc_list:
print(doc)

2、基于相似度匹配的查询方式:search()接口用于查找与给定查询向量相似的文档,返回指定的 Top K 个最相似的文档,并支持搭配自定义的标量字段的 Filter 表达式一并进行相似度检索。

doc_lists = coll.search(
vectors=[[0.3123, 0.43, 0.213],[0.315, 0.4, 0.216],[0.40, 0.38, 0.26]],
filter=Filter(Filter.In("bookName",["三国演义", "西游记"])),
params=SearchParams(ef=200),
retrieve_vector=True,
limit=3,
output_fields=['bookName','author']
) 
for i, docs in enumerate(doc_lists):
print(i)
for doc in docs:
print(doc)

更新数据代码如下

#create a database client object
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
# 指定需更新文档所属的数据库
db = client.database('db-test')
# 指定集合
coll = db.collection('book-vector')
#设置需更新的字段,或增加新的字段
update_doc = Document(vector=[0.2123, 0.290, 0.213], page=30, test_new_field="new field value")
# 对满足查询条件的 Document 更新字段
coll.update(data=update_doc, document_ids=['0001','0002','0003'], filter=Filter(Filter.In("bookName",["三国演义", "西游记"])))
# 更新之后,确认字段已更新
doc_list = coll.query(document_ids=['0001','0002'], retrieve_vector=True, limit=3)
# 输出确认结果
for doc in doc_list:
print(doc)

注意:
1、VectorDBClient 中的 url 和 key 填写成自己申请的向量数据库的哦(key就是秘钥)
2、read_consistency :设置读一致性,是非必填参数,默认取值EVENTUAL_CONSISTENCY,可取值如下:

  • ReadConsistency.STRONG_CONSISTENCY:强一致性。
  • ReadConsistency.EVENTUAL_CONSISTENCY:最终一致性。

结论和建议

整体使用腾讯云向量数据下来,我觉得腾讯数据库是一个非常棒的产品,即使你是一个小白,你也可以很快的入手,因为它的文档 产品文档 是非常详细的
在这里插入图片描述
它能够带你快速入门,文档基本覆盖了你所有可能遇到的问题,而且在实战使用过程中它的速度也是非常快的,完全可以满足企业的要求,有这方面需要的伙伴可以快速入手了。

选择一款合适的向量数据库是一件非常重要的事,不仅要考虑成本而且还要考虑效率等方面,腾讯云向量数据库用于大模型预训练数据的分类、去重和清洗相比传统方式可以实现10倍效率的提升,如果将腾讯云向量数据库作为外部知识库用于模型推理,则可以将成本降低2-4个数量级。所以我觉得不管是个人还是企业腾讯云向量数据库都是我们的第一选择。比如企业原先接入一个大模型需要花1个月左右时间,使用腾讯云向量数据库后,3天时间即可完成,极大降低了企业的接入成本。

目前腾讯云向量数据库只支持文本向量化写入,但对图片这些非结构化数据暂时不支持,浅浅的期待一波,等上线后,俺第一个使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1250592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【spring(五)】SpringMvc总结 SSM整合流程

目录 一、SpringMVC简介: 二、SpringMVC快速入门: 三、SpringMVC bean的管理:⭐ ①配置bean ②扫描bean 四、SpringMVC配置类:⭐ 五、SpringMVC 请求与响应 六、SpringMVC REST风格 七、SSM整合 异常处理: 八、…

Windows核心编程 进程遍历与文件加密

目录 进程的遍历 CreateToolhelp32Snapshot Process32First Process32Next 文件加密 使用openssl库进行DES加密 进程的遍历 什么是快照:虚拟中的快照: 我们在分析病毒,分析木马的时候,不能在真机分析,在虚拟机中…

【多线程】-- 02 线程创建之实现Runnable初识多线程并发问题

多线程 2 线程创建 2.2 实现Runnable接口 【学习提示】查看JDK帮助文档 定义MyRunnable类实现Runnable接口实现run()方法,编写线程执行体创建线程对象,调用start()方法启动线程 package com.duo.demo01;//创建线程方式二:实现Runnable接…

分布式事务,一致性理论, 两阶段提交(2PC), 三阶段提交(3PC),Seata分布式事务方案

文章目录 分布式事务:1、一致性理论2、两阶段提交(2PC)3、三阶段提交(3PC)4、Seata分布式事务方案 上一篇降到了 分布式锁,先来和大家聊一聊分布式事务, 分布式锁的链接如下: http…

位图的详细讲解

位运算操作符:或,与,异或,按位取反。 操作符 |两个中有一个是一则为一&两个都是一则为一^相同为零,不同为一~零变成一,一变成零 什么是位运算符: 位运算是直接对整型数据的二进制进行运算。 位图概念…

物流公司打印用什么软件,佳易王物流运单打印管理系统软件下载

物流公司打印用什么软件,佳易王物流运单打印管理系统软件下载 软件特色: 1、功能实用,操作简单,不会电脑也会操作,软件免安装,已内置数据库。 2、物流开单打印,可以打印两联单或三联单&#x…

X-RAY POC编写

POC(Proof of Concept) - 利用证明 POC,Proof of Concept,意思是 利用证明。这个短语会在漏洞报告中使用,漏洞报告中的POC则是一段说明或者一个攻击的漏洞介绍,使得读者能够确认这个漏洞是真实存在的。 EXP(Exploit) - 漏洞利用…

GDPU 数据结构 天码行空11

文章目录 数据结构实验十一 图的创建与存储一、实验目的二、实验内容三、【实验源代码】🍻 CPP版🍻 c 语言版🍻 java版 四、【实验结果】五、【实验总结】 数据结构实验十一 图的创建与存储 一、实验目的 1、 理解图的存储结构与基本操作&a…

【STM32】新建工程

学习来源:[2-2] 新建工程_哔哩哔哩_bilibili 目前STM32的开发主要有基于寄存器的开发方式、基于标准库也就是库函数的方式和基于HAL库的方式。本学习是基于库函数的方式。(各种资料去百度云下载) 1 建立工程文件夹 Keil中新建工程&#xf…

高性能Mysql第三版学习(一)

学习目标: 高性能Mysql第3版 学习内容: MySQL架构与历史Mysql基座测试服务器性能Schema与数据类型优化创建高性能的索引查询性能优化Mysql高级特性Explain 学习时间: 周一至周五晚上 9点—晚上10点周六晚上9点-10点周日晚上9 点-10点 学习…

公众号留言功能还有可能开放吗?

为什么公众号没有留言功能?2018年2月12日,TX新规出台:根据相关规定和平台规则要求,我们暂时调整留言功能开放规则,后续新注册帐号无留言功能。这就意味着2018年2月12日号之后注册的公众号不论个人主体还是组织主体&…

初出茅庐的小李博客之C语言必备知识共用体

C语言必备知识共用体 共用体是一种构造数据类型,有时候也称之为联合体。 它的用途: 使几个不同类型的变量共占一段内存。 共用体举例 union 共用体名 { 类型标识符 成员名;类型标识符 成员名; };union data //共用体名字是data{ int i; …

面试题:什么是自旋锁?自旋的好处和后果是什么呢?

文章目录 什么是自旋自旋和非自旋的获取锁的流程 自旋锁的好处AtomicLong 的实现实现一个可重入的自旋锁示例自旋的缺点适用场景 什么是自旋 “自旋”可以理解为“自我旋转”,这里的“旋转”指“循环”,比如 while 循环或者 for 循环。“自旋”就是自己…

初学剪辑者找视频素材就上这6个网站

视频剪辑必备的6个素材网站,高清无水印,还可以免费下载,无版权限制,赶紧收藏起来! 1、菜鸟图库 https://www.sucai999.com/video.html?vNTYxMjky 菜鸟图库网素材非常丰富,网站主要以设计类素材为主&#…

宝塔 Linux 面板安装一个高大上的论坛程序 —— Flarum

这个是很早搭建的版本,基于宝塔面板,比较复杂,如果想要简单的搭建方法,可以参看咕咕新写的这篇: 【好玩的 Docker 项目】10 分钟搭建一个高大上的论坛程序 购买腾讯云轻量应用服务器 待补充 登录服务器 待补充 BBR 加速脚本 BBR 加速脚本: BASH cd /usr/src &…

XML映射文件

<?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapperPUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <mapper namespace"org.mybatis.example.BlogMapper&q…

Chatbot开发三剑客:LLAMA、LangChain和Python

聊天机器人&#xff08;Chatbot&#xff09;开发是一项充满挑战的复杂任务&#xff0c;需要综合运用多种技术和工具。在这一领域中&#xff0c;LLAMA、LangChain和Python的联合形成了一个强大的组合&#xff0c;为Chatbot的设计和实现提供了卓越支持。 首先&#xff0c;LLAMA是…

蓝牙运动耳机哪个好?蓝牙运动耳机排行榜前十名

​在运动中&#xff0c;音乐可以激发你的热情和动力&#xff0c;而一款好的运动耳机则可以让你更好地享受音乐。然而&#xff0c;市面上的运动耳机品牌和型号众多&#xff0c;质量参差不齐。所以&#xff0c;今天精选了5款市面上比较优秀的运动耳机给大家参考&#xff0c;是你运…

【开源】基于JAVA的车险自助理赔系统

项目编号&#xff1a; S 018 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S018&#xff0c;文末获取源码。} 项目编号&#xff1a;S018&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 角色管理模块2.3 车…

Vatee万腾的科技冒险:Vatee独特探索力量的数字化征程

在数字化时代的激流中&#xff0c;Vatee万腾以其独特的科技冒险精神&#xff0c;引领着一场前所未有的数字化征程。这不仅仅是一次冒险&#xff0c;更是对未知的深度探索&#xff0c;将科技的力量推向新的高度。 Vatee万腾在科技领域敢于挑战传统&#xff0c;积极探索未知的可能…