第97步 深度学习图像目标检测:RetinaNet建模

news2024/9/22 13:41:06

基于WIN10的64位系统演示

一、写在前面

本期开始,我们继续学习深度学习图像目标检测系列,RetinaNet模型。

二、RetinaNet简介

RetinaNet 是由 Facebook AI Research (FAIR) 的研究人员在 2017 年提出的一种目标检测模型。它是一种单阶段(one-stage)的目标检测方法,但通过引入一个名为 Focal Loss 的创新损失函数,RetinaNet 解决了单阶段检测器常面临的正负样本不平衡问题。以下是 RetinaNet 的主要特点:

(1)Focal Loss:

传统的交叉熵损失往往由于背景类(负样本)的数量远大于目标类(正样本)而导致训练不稳定。为了解决这一不平衡问题,RetinaNet 引入了 Focal Loss。Focal Loss 被设计为更重视那些难以分类的负样本,而减少对容易分类的背景类的关注。这有助于提高模型对目标的检测精度。

(2)特征金字塔网络 (FPN):

RetinaNet 使用了特征金字塔网络 (FPN) 作为其骨干网络,这是一个为多尺度目标检测设计的卷积网络结构。FPN 可以从单张图像中提取多尺度的特征,使得模型能够有效地检测不同大小的物体。

(3)预定义锚框:

与其他一阶段检测器相似,RetinaNet 在其特征图上使用预定义的锚框来预测目标的位置和类别。

三、数据源

来源于公共数据,文件设置如下:

大概的任务就是:用一个框框标记出MTB的位置。

四、RetinaNet实战

直接上代码:

import os
import random
import torch
import torchvision
from torchvision.models.detection import retinanet_resnet50_fpn 
from torchvision.transforms import functional as F
from PIL import Image
from torch.utils.data import DataLoader
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
from torchvision import transforms
import albumentations as A
from albumentations.pytorch import ToTensorV2
import numpy as np

# Function to parse XML annotations
def parse_xml(xml_path):
    tree = ET.parse(xml_path)
    root = tree.getroot()

    boxes = []
    for obj in root.findall("object"):
        bndbox = obj.find("bndbox")
        xmin = int(bndbox.find("xmin").text)
        ymin = int(bndbox.find("ymin").text)
        xmax = int(bndbox.find("xmax").text)
        ymax = int(bndbox.find("ymax").text)

        # Check if the bounding box is valid
        if xmin < xmax and ymin < ymax:
            boxes.append((xmin, ymin, xmax, ymax))
        else:
            print(f"Warning: Ignored invalid box in {xml_path} - ({xmin}, {ymin}, {xmax}, {ymax})")

    return boxes

# Function to split data into training and validation sets
def split_data(image_dir, split_ratio=0.8):
    all_images = [f for f in os.listdir(image_dir) if f.endswith(".jpg")]
    random.shuffle(all_images)
    split_idx = int(len(all_images) * split_ratio)
    train_images = all_images[:split_idx]
    val_images = all_images[split_idx:]
    
    return train_images, val_images


# Dataset class for the Tuberculosis dataset
class TuberculosisDataset(torch.utils.data.Dataset):
    def __init__(self, image_dir, annotation_dir, image_list, transform=None):
        self.image_dir = image_dir
        self.annotation_dir = annotation_dir
        self.image_list = image_list
        self.transform = transform

    def __len__(self):
        return len(self.image_list)

    def __getitem__(self, idx):
        image_path = os.path.join(self.image_dir, self.image_list[idx])
        image = Image.open(image_path).convert("RGB")
        
        xml_path = os.path.join(self.annotation_dir, self.image_list[idx].replace(".jpg", ".xml"))
        boxes = parse_xml(xml_path)
        
        # Check for empty bounding boxes and return None
        if len(boxes) == 0:
            return None
        
        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        labels = torch.ones((len(boxes),), dtype=torch.int64)
        iscrowd = torch.zeros((len(boxes),), dtype=torch.int64)
        
        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["image_id"] = torch.tensor([idx])
        target["iscrowd"] = iscrowd
        
        # Apply transformations
        if self.transform:
            image = self.transform(image)
    
        return image, target

# Define the transformations using torchvision
data_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),  # Convert PIL image to tensor
    torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # Normalize the images
])


# Adjusting the DataLoader collate function to handle None values
def collate_fn(batch):
    batch = list(filter(lambda x: x is not None, batch))
    return tuple(zip(*batch))


def get_retinanet_model_for_finetuning(num_classes):
    # Load a RetinaNet model with a ResNet-50-FPN backbone without pre-trained weights
    model = retinanet_resnet50_fpn(pretrained=False, num_classes=num_classes)
    return model


# Function to save the model
def save_model(model, path="RetinaNet_mtb.pth", save_full_model=False):
    if save_full_model:
        torch.save(model, path)
    else:
        torch.save(model.state_dict(), path)
    print(f"Model saved to {path}")

# Function to compute Intersection over Union
def compute_iou(boxA, boxB):
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])
    
    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
    boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
    boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
    
    iou = interArea / float(boxAArea + boxBArea - interArea)
    return iou

# Adjusting the DataLoader collate function to handle None values and entirely empty batches
def collate_fn(batch):
    batch = list(filter(lambda x: x is not None, batch))
    if len(batch) == 0:
        # Return placeholder batch if entirely empty
        return [torch.zeros(1, 3, 224, 224)], [{}]
    return tuple(zip(*batch))

#Training function with modifications for collecting IoU and loss
def train_model(model, train_loader, optimizer, device, num_epochs=10):
    model.train()
    model.to(device)
    loss_values = []
    iou_values = []
    for epoch in range(num_epochs):
        epoch_loss = 0.0
        total_ious = 0
        num_boxes = 0
        for images, targets in train_loader:
            # Skip batches with placeholder data
            if len(targets) == 1 and not targets[0]:
                continue
            # Skip batches with empty targets
            if any(len(target["boxes"]) == 0 for target in targets):
                continue
            images = [image.to(device) for image in images]
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
            
            loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())
            
            optimizer.zero_grad()
            losses.backward()
            optimizer.step()
            
            epoch_loss += losses.item()
            
            # Compute IoU for evaluation
            with torch.no_grad():
                model.eval()
                predictions = model(images)
                for i, prediction in enumerate(predictions):
                    pred_boxes = prediction["boxes"].cpu().numpy()
                    true_boxes = targets[i]["boxes"].cpu().numpy()
                    for pred_box in pred_boxes:
                        for true_box in true_boxes:
                            iou = compute_iou(pred_box, true_box)
                            total_ious += iou
                            num_boxes += 1
                model.train()
        
        avg_loss = epoch_loss / len(train_loader)
        avg_iou = total_ious / num_boxes if num_boxes != 0 else 0
        loss_values.append(avg_loss)
        iou_values.append(avg_iou)
        print(f"Epoch {epoch+1}/{num_epochs} Loss: {avg_loss} Avg IoU: {avg_iou}")
    
    # Plotting loss and IoU values
    plt.figure(figsize=(12, 5))
    plt.subplot(1, 2, 1)
    plt.plot(loss_values, label="Training Loss")
    plt.title("Training Loss across Epochs")
    plt.xlabel("Epochs")
    plt.ylabel("Loss")
    
    plt.subplot(1, 2, 2)
    plt.plot(iou_values, label="IoU")
    plt.title("IoU across Epochs")
    plt.xlabel("Epochs")
    plt.ylabel("IoU")
    plt.show()

    # Save model after training
    save_model(model)

# Validation function
def validate_model(model, val_loader, device):
    model.eval()
    model.to(device)
    
    with torch.no_grad():
        for images, targets in val_loader:
            images = [image.to(device) for image in images]
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
            model(images)

# Paths to your data
image_dir = "tuberculosis-phonecamera"
annotation_dir = "tuberculosis-phonecamera"

# Split data
train_images, val_images = split_data(image_dir)

# Create datasets and dataloaders
train_dataset = TuberculosisDataset(image_dir, annotation_dir, train_images, transform=data_transform)
val_dataset = TuberculosisDataset(image_dir, annotation_dir, val_images, transform=data_transform)

# Updated DataLoader with new collate function
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, collate_fn=collate_fn)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, collate_fn=collate_fn)

# Model and optimizer
model = get_retinanet_model_for_finetuning(2)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# Train and validate
train_model(model, train_loader, optimizer, device="cuda", num_epochs=10)
validate_model(model, val_loader, device="cuda")


#######################################Print Metrics######################################
def calculate_metrics(predictions, ground_truths, iou_threshold=0.5):
    TP = 0  # True Positives
    FP = 0  # False Positives
    FN = 0  # False Negatives
    total_iou = 0  # to calculate mean IoU

    for pred, gt in zip(predictions, ground_truths):
        pred_boxes = pred["boxes"].cpu().numpy()
        gt_boxes = gt["boxes"].cpu().numpy()

        # Match predicted boxes to ground truth boxes
        for pred_box in pred_boxes:
            max_iou = 0
            matched = False
            for gt_box in gt_boxes:
                iou = compute_iou(pred_box, gt_box)
                if iou > max_iou:
                    max_iou = iou
                    if iou > iou_threshold:
                        matched = True

            total_iou += max_iou
            if matched:
                TP += 1
            else:
                FP += 1

        FN += len(gt_boxes) - TP

    precision = TP / (TP + FP) if (TP + FP) != 0 else 0
    recall = TP / (TP + FN) if (TP + FN) != 0 else 0
    f1_score = (2 * precision * recall) / (precision + recall) if (precision + recall) != 0 else 0
    mean_iou = total_iou / (TP + FP) if (TP + FP) != 0 else 0

    return precision, recall, f1_score, mean_iou

def evaluate_model(model, dataloader, device):
    model.eval()
    model.to(device)
    all_predictions = []
    all_ground_truths = []

    with torch.no_grad():
        for images, targets in dataloader:
            images = [image.to(device) for image in images]
            predictions = model(images)

            all_predictions.extend(predictions)
            all_ground_truths.extend(targets)

    precision, recall, f1_score, mean_iou = calculate_metrics(all_predictions, all_ground_truths)
    return precision, recall, f1_score, mean_iou


train_precision, train_recall, train_f1, train_iou = evaluate_model(model, train_loader, "cuda")
val_precision, val_recall, val_f1, val_iou = evaluate_model(model, val_loader, "cuda")

print("Training Set Metrics:")
print(f"Precision: {train_precision:.4f}, Recall: {train_recall:.4f}, F1 Score: {train_f1:.4f}, Mean IoU: {train_iou:.4f}")

print("\nValidation Set Metrics:")
print(f"Precision: {val_precision:.4f}, Recall: {val_recall:.4f}, F1 Score: {val_f1:.4f}, Mean IoU: {val_iou:.4f}")

#sheet
header = "| Metric    | Training Set | Validation Set |"
divider = "+----------+--------------+----------------+"

train_metrics = f"| Precision | {train_precision:.4f}      | {val_precision:.4f}          |"
recall_metrics = f"| Recall    | {train_recall:.4f}      | {val_recall:.4f}          |"
f1_metrics = f"| F1 Score  | {train_f1:.4f}      | {val_f1:.4f}          |"
iou_metrics = f"| Mean IoU  | {train_iou:.4f}      | {val_iou:.4f}          |"

print(header)
print(divider)
print(train_metrics)
print(recall_metrics)
print(f1_metrics)
print(iou_metrics)
print(divider)

#######################################Train Set######################################
import numpy as np
import matplotlib.pyplot as plt

def plot_predictions_on_image(model, dataset, device, title):
    # Select a random image from the dataset
    idx = np.random.randint(50, len(dataset))
    image, target = dataset[idx]
    img_tensor = image.clone().detach().to(device).unsqueeze(0)

    # Use the model to make predictions
    model.eval()
    with torch.no_grad():
        prediction = model(img_tensor)

    # Inverse normalization for visualization
    inv_normalize = transforms.Normalize(
        mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
        std=[1/0.229, 1/0.224, 1/0.225]
    )
    image = inv_normalize(image)
    image = torch.clamp(image, 0, 1)
    image = F.to_pil_image(image)

    # Plot the image with ground truth boxes
    plt.figure(figsize=(10, 6))
    plt.title(title + " with Ground Truth Boxes")
    plt.imshow(image)
    ax = plt.gca()

    # Draw the ground truth boxes in blue
    for box in target["boxes"]:
        rect = plt.Rectangle(
            (box[0], box[1]), box[2]-box[0], box[3]-box[1],
            fill=False, color='blue', linewidth=2
        )
        ax.add_patch(rect)
    plt.show()

    # Plot the image with predicted boxes
    plt.figure(figsize=(10, 6))
    plt.title(title + " with Predicted Boxes")
    plt.imshow(image)
    ax = plt.gca()

    # Draw the predicted boxes in red
    for box in prediction[0]["boxes"].cpu():
        rect = plt.Rectangle(
            (box[0], box[1]), box[2]-box[0], box[3]-box[1],
            fill=False, color='red', linewidth=2
        )
        ax.add_patch(rect)
    plt.show()

# Call the function for a random image from the train dataset
plot_predictions_on_image(model, train_dataset, "cuda", "Selected from Training Set")


#######################################Val Set######################################

# Call the function for a random image from the validation dataset
plot_predictions_on_image(model, val_dataset, "cuda", "Selected from Validation Set")

这回也是需要从头训练的,就不跑了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1249352.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux基础】Linux常见指令总结及周边小知识

前言 Linux系统编程的学习我们将要开始了&#xff0c;学习它我们不得不谈谈它的版本发布是怎样的&#xff0c;谈它的版本发布就不得不说说unix。下面是unix发展史是我在百度百科了解的 Unix发展史 UNIX系统是一个分时系统。最早的UNIX系统于1970年问世。此前&#xff0c;只有…

两年功能五年自动化测试面试经验分享

最近有机会做一些面试工作&#xff0c;主要负责面试软件测试人员招聘的技术面试。 之前一直是应聘者的角色&#xff0c;经历了不少次的面试之后&#xff0c;多少也积累一点面试的经验&#xff0c;现在发生了角色转变。初次的面试就碰到个工作年限比我长的&#xff0c;也没有时…

ubuntu22.04 arrch64版操作系统编译zlmediakit

脚本 系统没有cmake&#xff0c;需要通过apt先进行下载&#xff0c;下面的脚本已经包含了 # 安装依赖 gcc-c.x86_64 这个不加的话会有问题 sudo yum -y install gcc gcc-c libssl-dev libsdl-dev libavcodec-dev libavutil-dev ffmpeg git openssl-devel gcc-c.x86_64 ca…

R语言如何实现多元线性回归

输入数据 先把数据用excel保存为csv格式放在”我的文档”文件夹 打开R软件,不用新建,直接写 回归计算 求三个平方和 置信区间(95%)

springboot 返回problem+json

spring所有配置都在WebMvcAutoConfiguration中 其中有 ProblemDetailsExceptionHandler 容器中的一个组件 -ControllerAdvice用来集中处理异常的 -点进ResponseEntityExceptionHandler 包含这些异常&#xff0c;如果出现以下异常&#xff0c;会被springboot支持以RFC 7807规…

2022年03月 Scratch(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 以下四个选项中,运行哪个积木块,可能得到523这个数值? A: B: C: D: 答案:B 四个选项都遵循统一的公式:随机数ⅹ10+3=523,因此可以得出随

Redis-主从与哨兵架构

Jedis使用 Jedis连接代码示例&#xff1a; 1、引入依赖 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.9.0</version> </dependency> 2、访问代码 public class JedisSingleTe…

Modown主题v8.12 安装教程和主题下载

亲测」Modown主题v8.12学习版 上传好主题选择该主题就好了设置 设置好的首页 内容页&#xff1a; WordPress主题Modown和WordPress插件Erphpdown想必正在使用WordPress程序建站的站长都非常熟悉&#xff0c;因为这两款应用在WordPress站长圈子里还是比较知名的&#xff0c;所以…

LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt

LangChain系列文章 LangChain 实现给动物取名字&#xff0c;LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储&#xff0c;读取YouTube的视频文本搜索I…

百度 文心一言 sdk 试用

JMaven Central: com.baidu.aip:java-sdk (sonatype.com) Java sdk地址如上&#xff1a; 文心一言开发者 文心一言 (baidu.com) ERNIE Bot SDK https://yiyan.baidu.com/developer/doc#Fllzznonw ERNIE Bot SDK提供便捷易用的接口&#xff0c;可以调用文心一言的能力&#…

1553B板卡详解

个人博客地址: https://cxx001.gitee.io 简介 1553b板卡主要应用于航天航空工业领域&#xff0c;它的数据传输结构有点类似集中分布式服务器的设计&#xff0c;分为BC、RT、BM三类部件&#xff0c;BC有且仅有1个&#xff0c;类似我们的master管理服务节点&#xff0c;RT有0~32…

LangChain(0.0.339)官方文档二:LCEL

文章目录 一、LangChain Expression Language (LCEL)1.1 LCEL简介1.2 Runnable1.2.1 Runnable方法1.2.2 Runnable组合方式1.2.3 修改行为 1.3 输入输出模式1.3.1 前置知识&#xff1a;Pydantic1.3.2 Input Schema1.3.3 Output Schema 1.4 同步调用1.4.1 Invoke1.4.2 Stream1.4.…

超分辨率重建

意义 客观世界的场景含有丰富多彩的信息&#xff0c;但是由于受到硬件设备的成像条件和成像方式的限制&#xff0c;难以获得原始场景中的所有信息。而且&#xff0c;硬件设备分辨率的限制会不可避免地使图像丢失某些高频细节信息。在当今信息迅猛发展的时代&#xff0c;在卫星…

io.lettuce.core.RedisCommandExecutionException

io.lettuce.core.RedisCommandExecutionException: ERR invalid password ERR invalid password-CSDN博客 io.lettuce.core.RedisCommandExecutionException /** Copyright 2011-2022 the original author or authors.** Licensed under the Apache License, Version 2.0 (the…

医学图像分割:U_Net 论文阅读

“U-Net: Convolutional Networks for Biomedical Image Segmentation” 是一篇由Olaf Ronneberger, Philipp Fischer, 和 Thomas Brox发表的论文&#xff0c;于2015年在MICCAI的医学图像计算和计算机辅助干预会议上提出。这篇论文介绍了一种新型的卷积神经网络架构——U-Net&a…

二叉树--详解

目录 树的概念 关于树的概念 二叉树 概念 两种特殊的二叉树 满二叉树 完全二叉树 二叉树的性质 巩固性质的习题 简单的创建二叉树 二叉树的遍历 递归实现二叉树的前中后后序遍历 二叉树的基本操作 获取树中节点个数 获取叶子结点个数 子问题思路-获取叶子结点个…

CTFSHOW sqll注入

号过滤绕过 号和不加通配符的 like 是一样的。 还可以使用 < >号来绕过&#xff0c;<> 在mysql中等于! 如果在加一个! 双重否定代表肯定 就是了 空格过滤绕过 /**/ &#xff0c;()&#xff0c;&#xff0c;tab&#xff0c;两个空格 or and xor not 过滤绕过 a…

Jenkins 整合 Docker 自动化部署

Docker 安装 Jenkins 配置自动化部署 1. Docker 安装 Jenkins 1.1 拉取镜像文件 docker pull jenkins/jenkins1.2 创建挂载文件目录 mkdir -p $HOME/jenkins_home1.3 启动容器 docker run -d -p 8080:8080 -v $HOME/jenkins_home:/var/jenkins_home --name jenkins jenkin…

Redis高并发缓存架构

前言&#xff1a; 针对缓存我们并不陌生&#xff0c;而今天所讲的是使用redis作为缓存工具进行缓存数据。redis缓存是将数据保存在内存中的&#xff0c;而内存的珍贵性是不可否认的。所以在缓存之前&#xff0c;我们需要明确缓存的对象&#xff0c;是否有必要缓存&#xff0c;怎…

播放器开发(四):多线程解复用与解码模块实现

学习课题&#xff1a;逐步构建开发播放器【QT5 FFmpeg6 SDL2】 前言 根据第一章内容&#xff0c;我们首先可以先把解复用和解码模块完成&#xff0c;其中需要使用到多线程以及队列&#xff0c;还需要使用FFmpeg进行解复用和解码动作的实现。 创建BaseQueue基类 BaseQueue.h…