基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码

news2025/1/11 12:00:39

基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于战争策略优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用战争策略算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于战争策略优化的PNN网络

战争策略算法原理请参考:https://blog.csdn.net/u011835903/article/details/126599876

利用战争策略算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

战争策略参数设置如下:

%% 战争策略参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,战争策略-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1248564.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SSL握手失败的解决方案

一、SSL握手失败的原因: 1,证书过期:SSL证书有一个有效期限,如果证书过期,就会导致SSL握手失败。 2,证书不被信任:如果网站的SSL证书不被浏览器或操作系统信任,也会导致SSL握手失败…

(Matalb时序预测)GA-BP遗传算法优化BP神经网络的多维时序回归预测

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、部分代码 四、本文代码数据说明手册分享: 一、程序及算法内容介绍: 基本内容: 本代码基于Matalb平台编译&am…

C#,《小白学程序》第四课:数学计算,总和与平均值

程序是 数据 计算 显示。 1 文本格式 /// <summary> /// 《小白学程序》第四课&#xff1a;数学计算 /// 这节课超级简单&#xff0c;就是计算成绩的平均值&#xff08;平均分&#xff09; /// 这个是老师们经常做的一件事。 /// </summary> /// <param name&…

C#,《小白学程序》第六课:队列(Queue)其二,队列的应用,编写《实时叫号系统》

医院里面常见的《叫号系统》怎么实现的&#xff1f; 1 文本格式 /// <summary> /// 下面定义一个新的队列&#xff0c;用于演示《实时叫号系统》 /// </summary> Queue<Classmate> q2 new Queue<Classmate>(); /// <summary> /// 《小白学程序…

超赞 | 7组优秀的金融APP界面设计案例分享!

随着各大银行陆续推出手机银行APP&#xff0c;金融APP在众多领域也开始崭露头角。然而&#xff0c;从用户体验的角度来看&#xff0c;金融APP设计与其他类型的APP设计有其独特之处。由于金融APP与人们的钱包息息相关&#xff0c;因此&#xff0c;其安全性、界面体验和操作反馈等…

DataFunSummit:2023年现代数据栈技术峰会-核心PPT资料下载

一、峰会简介 现代数据栈&#xff08;Modern Data Stack&#xff09;是一种集合了多种技术和工具的软件基础设施&#xff0c;旨在更好地管理和处理数据&#xff0c;并为企业提供数据驱动的洞察和决策。包含以下几个组件&#xff1a;数据采集、数据处理、数据存储、数据查询和分…

OpenCV快速入门:特征点检测与匹配

文章目录 前言一、角点检测1.1 角点特征1.1.1 角点特征概念1.1.2 角点的特点1.1.3 关键点绘制代码实现1.1.4 函数解析 1.2 Harris角点检测1.2.1 Harris角点检测原理1.2.2 Harris角点检测公式1.2.3 代码实现1.2.4 函数解析 1.3 Shi-Tomasi角点检测1.3.1 Shi-Tomasi角点检测原理1…

Qt项目打包发布超详细教程

https://blog.csdn.net/qq_45491628/article/details/129091320

Hibernate的三种状态

1.瞬时状态(Transient) 通过new创建对象后&#xff0c;对象并没有立刻持久化&#xff0c;他并未对数据库中的数据有任何的关联&#xff0c;此时java对象的状态为瞬时状态&#xff0c;Session对于瞬时状态的java对象是一无所知的&#xff0c;当对象不再被其他对象引用时&#xf…

AIGC 3D即将爆发,混合显示成为产业数字化的生产力平台

2023年&#xff0c;大语言模型与生成式AI浪潮席卷全球&#xff0c;以文字和2D图像生成为代表的AIGC正在全面刷新产业数字化。而容易为市场所忽略的是&#xff0c;3D图像生成正在成为下一个AIGC风口&#xff0c;AIGC 3D宇宙即将爆发。所谓AIGC 3D宇宙&#xff0c;即由文本生成3D…

【数据结构】二叉排序树(c风格、结合c++引用)

目录 1 基本概念 结构体定义 各种接口 2 二叉排序树的构建和中序遍历 递归版单次插入 非递归版单次插入 3 二叉排序树的查找 非递归版本 递归版本 4 二叉排序树的删除&#xff08;难点&#xff09; 1 基本概念 普通二叉排序树是一种简单的数据结构&#xff0c;节点的值…

【TL431+场效应管组成过压保护电路】2022-3-22

缘由这个稳压三极管是构成的电路是起到保护的作用吗&#xff1f;-硬件开发-CSDN问答

微服务实战系列之Nginx

前言 Nginx&#xff1f;写了那么多文章&#xff0c;为什么今天才轮到它的表演&#xff1f;那是因为它实在太重要了&#xff0c;值得大书特书&#xff0c;特别对待。 当我们遇到单点瓶颈&#xff0c;第一个idea是&#xff1f;Nginx&#xff1b; 当我们需要反向代理&#xff0c;…

弹窗msvcp140_1.dll丢失的解决方法,超简单的方法分享

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中最常见的就是缺少某个文件的错误。最近&#xff0c;我在使用某些软件时&#xff0c;遇到了一个名为“msvcp140_1.dll”的错误提示。这个错误通常出现在运行某些程序时&#xff0c;由于缺少了msvcp140…

burp抓取雷电模拟器的数据包

文章目录 一、从burp中导出证书二、雷电模拟器的相关设置三、将burp的证书添加到模拟器的系统证书下四、安装ProxyDroid 所需软件 雷电模拟器版本&#xff1a;4.0.83Burp Suite Community Edition v2023.10.3.6ProxyDroid 起因&#xff1a;常规方法&#xff08;wifi处添加代理…

生态对对碰|华为OceanStor闪存存储与OceanBase完成兼容性互认证!

近日&#xff0c;北京奥星贝斯科技有限公司 OceanBase 数据库与华为技术有限公司 OceanStor Dorado 全闪存存储系统、OceanStor 混合闪存存储系统完成兼容性互认证。 OceanBase 数据库挂载 OceanStor 闪存存储做为数据盘和日志盘&#xff0c;在 OceanStor 闪存存储系统卓越性能…

“三个绝技“让项目经理轻松做好进度管理

大家好&#xff0c;我是老原。 我离开腾讯之后&#xff0c;曾经加入一家互联网创业公司。 要知道&#xff0c;当你在一个大公司的平台上做事做习惯之后&#xff0c;觉得一些流程都应该是严谨的、完备的、按计划进行的。 但是当时&#xff0c;经常出现一个致命问题——进度拖…

html幸运大转盘抽奖(附源码)

文章目录 1.设计来源1.1 幸运大转盘 风格11.2 幸运大转盘 风格21.3 幸运大转盘 风格31.4 幸运大转盘 奖品效果1.5 幸运大转盘 活动未开始1.6 幸运大转盘 活动已结束1.7 幸运大转盘 图片源素材 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&a…

【C/PTA —— 11.函数2(课外实践)】

C/PTA —— 11.函数2&#xff08;课外实践&#xff09; 一.函数题6-1 计算A[n]1/(1 A[n-1])6-2 递归实现顺序输出整数6-3 自然数的位数(递归版)6-4 分治法求解金块问题6-5 汉诺塔6-6 重复显示字符(递归版)6-7 显示平行四边形(右)(递归版) 二.编程题7-2 N阶楼梯上楼问题 一.函数…

typora中的快捷键shift enter 和 enter的交换

1 问题&#xff1a; 我最近在用 typora 进行写作&#xff0c;但是在合格 typora 的 markdown 编辑器很奇怪&#xff0c;它的一个回车符是两次换行&#xff0c;而用 shfit ent 找了半天都不知道怎么解决的这个问题&#xff0c;然后我就去了这个 typora 在 github 开源的问题仓库…