基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码

news2025/1/11 18:28:57

基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于食肉植物优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用食肉植物算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于食肉植物优化的PNN网络

食肉植物算法原理请参考:https://blog.csdn.net/u011835903/article/details/125921790

利用食肉植物算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

食肉植物参数设置如下:

%% 食肉植物参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,食肉植物-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1248481.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CAN实验

CAN 寄存器 HAL库函数 代码 #include "./BSP/CAN/can.h"CAN_HandleTypeDef g_can1_handle; CAN_TxHeaderTypeDef g_can1_txheader; CAN_RxHeaderTypeDef g_can1_rxheader;/* STM32F103 TS1 8 TS2 7 BRP 3 波特率:36000 / [(9 8 1) * 4] 500Kbps …

甲烷产生及氧化

温室气体排放被认为是加速气候变化的重要因素,甲烷(CH4)是仅次于二氧化碳(CO2)的重要温室气体,其百年温室效应潜势是CO2的28倍[1-2]。湿地中的CH4由产甲烷古菌在水体底部或沉积层严格厌氧环境下产生并释放进入水体,产生的CH4向上覆水运输过程…

【沐风老师】在3dMax中如何把对象随机散布在表面上?

在3dMax中如何把对象随机散布在表面上? 在这个教程中,给大家讲解在3dMax中如何把对象随机散布到另一个对象的表面上。有不少3dMax的初学者在将对象分布在随机表面上时感到手足无措。如果,将每个对象手动放置在表面上并花时间调整每个对象根本…

卷积神经网络(Inception V3)识别手语

文章目录 一、前言二、前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集 三、构建Inception V3网络模型1.自己搭建2.官方模型 五、编译六、训练模型七、模型…

C++模拟如何实现vector的方法

任意位置插入,insert的返回值为新插入的第一个元素位置的迭代器;因为插入可能会进行扩容,导致start的值改变,所以先定义一个变量保存pos与start的相对位置;判断是否需要扩容;从插入位置开始,将所…

Qt学习(2)

1.QObject 只有继承了QObject类的类,才具有信号槽的能力。所以,为了使用信号槽,必须继承QObject。凡是QObject类(不管是直接子类还是间接子类),都应该在第一行代码写上Q_OBJECT。不管是不是使用信号槽&…

dom api

dom的全称为Document Object Model,即文档对象模型.所谓文档就是html页面,对象就是js里的对象,通过这个模型把页面上的元素和js里的对象关联起来. 下面是关于dom api的一些常用方法 1.获取元素 使用querySelector()方法获取一个元素 使用querySelectorAll()方法获取所有元素 当…

MediaCodec详解

MediaCodec 是Android平台提供的一个API,用于对音频和视频数据进行编码(转换为不同的格式)和解码(从一种格式转换回原始数据)。它是Android 4.1(API级别16)及以上版本的一部分,允许开…

【C语言】函数(四):函数递归与迭代,二者有什么区别

目录 前言递归定义递归的两个必要条件接受一个整型值(无符号),按照顺序打印它的每一位使用函数不允许创建临时变量,求字符串“abcd”的长度求n的阶乘求第n个斐波那契数 迭代总结递归与迭代的主要区别用法不同结构不同时间开销不同…

【Python】实现一个简单的区块链系统

本文章利用 Python 实现一个简单的功能较为完善的区块链系统(包括区块链结构、账户、钱包、转账),采用的共识机制是 POW。 一、区块与区块链结构 Block.py import hashlib from datetime import datetimeclass Block:"""区…

智能头盔天眼摄像头、单兵执法记录仪等配合MESH自组网在应急指挥调度中的应用

智能头盔、天眼摄像头、头盔记录仪、头盔摄像头、单兵执法记录仪等配合MESH自组网在应急指挥调度中的应用。 20人背负单兵自组网(带手咪)到训练场,戴头盔,头盔上放头盔式摄像头,大功率自组网设置在制高点,…

改进YOLOv8 | YOLOv5系列:RFAConv续作,即插即用具有任意采样形状和任意数目参数的卷积核AKCOnv

RFAConv续作,构建具有任意采样形状的卷积AKConv 一、论文yolov5加入的方式论文 源代码 一、论文 基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷:一方面,卷积运算被限制在一个局部窗口,不能从其他位置捕获信息,并且其采样形状是…

五种多目标优化算法(MOJS、NSGA3、MOGWO、NSWOA、MOPSO)求解微电网多目标优化调度(MATLAB代码)

一、多目标优化算法简介 (1)多目标水母搜索算法MOJS 多目标优化算法:多目标水母搜索算法MOJS(提供MATLAB代码)_水母算法-CSDN博客 (2)NSGA3 NSGA-III求解微电网多目标优化调度(M…

c语言数字转圈

数字转圈 题干输入整数 N(1≤N≤9),输出如下 N 阶方阵。 若输入5显示如下方阵: * 1** 2** 3** 4** 5* *16**17**18**19** 6* *15**24**25**20** 7* *14**23**22**21** 8* *13**12**11**10** 9*输入样例3输出样例* 1*…

腾讯云云服务器旗舰新品SA5重磅首发

近日,腾讯云云服务器CVM再升级,极具性价比的云服务器旗舰新机型SA5重磅发布,搭载第四代AMD EPYC处理器(Bergamo), 相比云服务器SA3实例,整机性能最大提升120%以上。 温馨提醒:购买腾…

【Java 进阶篇】Jedis 操作 String:Redis中的基础数据类型

在Redis中,String是最基础的数据类型之一,而Jedis作为Java开发者与Redis交互的利器,提供了丰富的API来操作String。本文将深入介绍Jedis如何操作Redis中的String类型数据,通过生动的代码示例和详细的解释,让你轻松掌握…

基于白鲸算法优化概率神经网络PNN的分类预测 - 附代码

基于白鲸算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于白鲸算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于白鲸优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

【电子通识】什么是物料清单BOM(Bill of Material))

BOM (Bill of Materials)是我们常说的物料清单。BOM是制造业管理的重点之一,用于记载产品组成所需要的全部物料(Items)。物料需求的计算是从最终产品开始,层层往下推算出部件,组件,零件和原材料的需求量。这…

MindStudio学习一 整体介绍

一场景介绍 二 安装介绍 1.LINUX 采用无昇腾硬件采用linux 分部署 2.WINDOWS 3.linux下安装整体步骤 3.1安装依赖 3.2 安装步骤 1.gcc cmake 等依赖 2.python3.7.5 3.pip 安装依赖 4.安装JDK 5.安装 Ascend-cann-toolkit 6.解压安装Mindstudio 7.进入bin路径 ./…

Cortex-M与RISC-V区别

环境 Cortex-M以STM32H750为代表,RISC-V以芯来为代表 RTOS版本为RT-Thread 4.1.1 寄存器 RISC-V 常用汇编 RISC-V 关于STORE x4, 4(sp)这种寄存器前面带数字的写法,其意思为将x4的值存入sp4这个地址,即前面的数字表示偏移的意思 反之LOA…