ELK+kafka+filebeat企业内部日志分析系统

news2024/11/15 21:27:12

1、组件介绍

1、Elasticsearch:

  是一个基于Lucene的搜索服务器。提供搜集、分析、存储数据三大功能。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

2、Logstash:

  主要是用来日志的搜集、分析、过滤日志的工具。用于管理日志和事件的工具,你可以用它去收集日志、转换日志、解析日志并将他们作为数据提供给其它模块调用,例如搜索、存储等。

3、Kibana:

  是一个优秀的前端日志展示框架,它可以非常详细的将日志转化为各种图表,为用户提供强大的数据可视化支持,它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。

4、Kafka:

数据缓冲队列。作为消息队列解耦合处理过程,同时提高了可扩展性。具有峰值处理能力,使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

  • 1.发布和订阅记录流,类似于消息队列或企业消息传递系统。

  • 2.以容错持久的方式存储记录流。

  • 3.处理记录发生的流。

5、Filebeat:

隶属于Beats,轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,也会是 ELK Stack 在 Agent 的第一选择,目前Beats包含四种工具:

  • 1.Packetbeat(搜集网络流量数据)

  • 2.Metricbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据。通过从操作系统和服务收集指标,帮助您监控服务器及其托管的服务。)

  • 3.Filebeat(搜集文件数据)

  • 4.Winlogbeat(搜集 Windows 事件日志数据)

2、环境介绍

注:以下为环境所需所有服务器,配置为测试环境配置。

安装软件主机名IP地址系统版本配置
Elasticsearch/Logstash/kibanaElk10.3.145.14centos7.5.18042核4G
ElasticsearchEs110.3.145.57centos7.5.18042核3G
ElasticsearchEs210.3.145.57centos7.5.18042核3G
zookeeper/kafkaKafka110.3.145.41centos7.5.18041核2G
zookeeper/kafkaKafka210.3.145.42centos7.5.18041核2G
zookeeper/kafkaKafka310.3.145.43centos7.5.18041核2G
Filebeat

3、版本说明

Elasticsearch: 7.13.2
Logstash: 7.13.2
Kibana: 7.13.2
Kafka: 2.11-1
Filebeat: 7.13.2
相应的版本最好下载对应的插件

4、搭建架构

Untitled1

1、日志数据由filebate进行收集,定义日志位置,定义kafka集群,定义要传给kafka的那个topic
2、kafka接受到数据后,端口为9092,等待消费
3、logstash消费kafka中的数据,对数据进行搜集、分析,根据输入条件,过滤条件,输出条件处理后,将数据传输给es集群
4、es集群接受数据后,搜集、分析、存储
5、kibana提供可视化服务,将es中的数据展示。

相关地址:

官网地址:https://www.elastic.co

官网搭建:Starting with the Elasticsearch Platform and its Solutions | Elastic

5、实施部署

1、 Elasticsearch集群部署
  • 服务器

安装软件主机名IP地址系统版本配置
ElasticsearchElk10.3.145.14centos7.5.18042核4G
ElasticsearchEs110.3.145.57centos7.5.18042核3G
ElasticsearchEs210.3.145.57centos7.5.18042核3G
  • 软件版本:elasticsearch-7.13.2.tar.gz

  • 示例节点:10.3.145.14

1、安装配置jdk
可以自行安装,es安装包中自带了jdk
2、安装配置ES
(1)创建运行ES的普通用户
[root@elk ~]# useradd es
[root@elk ~]# echo "******" | passwd --stdin "es"
(2)安装配置ES
[root@elk ~]# tar zxvf /usr/local/package/elasticsearch-7.13.2-linux-x86_64.tar.gz -C /usr/local/
[root@elk ~]# vim /usr/local/es/config/elasticsearch.yml
cluster.name: cloud2304-elk
cluster.initial_master_nodes: ["10.36.192.181","10.36.192.182","10.36.192.184"] # 单节点模式这里的地址只填写本机地址
node.name: elk01
node.master: true
node.data: true
path.data: /data/elasticsearch/data
path.logs: /data/elasticsearch/logs
bootstrap.memory_lock: false
bootstrap.system_call_filter: false
network.host: 0.0.0.0
http.port: 9200
transport.tcp.port: 9300
# 单节点模式下,将discovery开头的行注释
discovery.seed_hosts: ["10.36.192.182","10.36.192.184"]
discovery.zen.minimum_master_nodes: 2
discovery.zen.ping_timeout: 150s
discovery.zen.fd.ping_retries: 10
client.transport.ping_timeout: 60s
http.cors.enabled: true
http.cors.allow-origin: "*"
​
​
# 由于我们的笔记本性能有限,如果要使用单节点多实例的话,添加在原有配置中添加
node.max_local_storage_nodes:  这个配置限制了单节点上可以开启的ES存储实例的个数

配置项含义:

cluster.name    集群名称,各节点配成相同的集群名称。
cluster.initial_master_nodes 集群ip,默认为空,如果为空则加入现有集群,第一次需配置
node.name       节点名称,各节点配置不同。
node.master     指示某个节点是否符合成为主节点的条件。
node.data       指示节点是否为数据节点。数据节点包含并管理索引的一部分。
path.data       数据存储目录。
path.logs       日志存储目录。
bootstrap.memory_lock       内存锁定,是否禁用交换,测试环境建议改为false。
bootstrap.system_call_filter    系统调用过滤器。
network.host    绑定节点IP。
http.port       rest api端口。
discovery.seed_hosts    提供其他 Elasticsearch 服务节点的单点广播发现功能,这里填写除了本机的其他ip
discovery.zen.minimum_master_nodes  集群中可工作的具有Master节点资格的最小数量,官方的推荐值是(N/2)+1,其中N是具有master资格的节点的数量。
discovery.zen.ping_timeout      节点在发现过程中的等待时间。
discovery.zen.fd.ping_retries        节点发现重试次数。
http.cors.enabled               是否允许跨源 REST 请求,用于允许head插件访问ES。
http.cors.allow-origin              允许的源地址。
(3)设置JVM堆大小 #7.0默认为4G
[root@elk ~]# sed -i 's/## -Xms4g/-Xms4g/' /usr/local/es/config/jvm.options  
[root@elk ~]# sed -i 's/## -Xmx4g/-Xmx4g/' /usr/local/es/config/jvm.options

注意: 确保堆内存最小值(Xms)与最大值(Xmx)的大小相同,防止程序在运行时改变堆内存大小。 如果系统内存足够大,将堆内存最大和最小值设置为31G,因为有一个32G性能瓶颈问题。 堆内存大小不要超过系统内存的50%

(4)创建ES数据及日志存储目录
[root@elk ~]# mkdir -p /data/elasticsearch/data       (/data/elasticsearch)
[root@elk ~]# mkdir -p /data/elasticsearch/logs       (/log/elasticsearch)
(5)修改安装目录及存储目录权限
[root@elk ~]# chown -R es.es /data/elasticsearch
[root@elk ~]# chown -R es.es /usr/local/es
3、系统优化
(1)增加最大文件打开数

永久生效方法:

[root@elk ~]# echo "* soft nofile 65536" >> /etc/security/limits.conf
(2)增加最大进程数
[root@elk ~]# echo "* soft nproc 65536" >> /etc/security/limits.conf
* soft nofile 65536
* hard nofile 131072
* soft nproc 4096
* hard nproc 4096
更多的参数调整可以直接用这个

(3)增加最大内存映射数
[root@elk ~]# echo "vm.max_map_count=262144" >> /etc/sysctl.conf
[root@elk ~]# sysctl -p

启动如果报下列错误

memory locking requested for elasticsearch process but memory is not locked
elasticsearch.yml文件
bootstrap.memory_lock : false
/etc/sysctl.conf文件
vm.swappiness=0
​
错误:
max file descriptors [4096] for elasticsearch process is too low, increase to at least [65536]
​
意思是elasticsearch用户拥有的客串建文件描述的权限太低,知道需要65536个
​
解决:
​
切换到root用户下面:
vim   /etc/security/limits.conf
​
在最后添加
* hard nofile 65536
* hard nofile 65536

重新启动elasticsearch,还是无效?
必须重新登录启动elasticsearch的账户才可以,例如我的账户名是elasticsearch,退出重新登录。
另外*也可以换为启动elasticsearch的账户也可以,* 代表所有,其实比较不合适
​
启动还会遇到另外一个问题,就是
max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]
意思是:elasticsearch用户拥有的内存权限太小了,至少需要262114。这个比较简单,也不需要重启,直接执行
sysctl -w vm.max_map_count=262144
就可以了

4、启动ES
[root@elk ~]# su - es -c "cd /usr/local/es && nohup bin/elasticsearch &"

测试:浏览器访问http://10.3.145.14:9200

ELK6.5+Beats6.5+Kafka2.1.0集群搭建

5.安装配置head监控插件 (只在第一台es部署)
  • 服务器

安装软件主机名IP地址系统版本配置
Elasticsearch-head-masterElk10.3.145.14centos7.5.18042核4G
(1)安装node
[root@elk ~]# wget https://npm.taobao.org/mirrors/node/latest-v10.x/node-v10.0.0-linux-x64.tar.gz
[root@elk ~]# tar -zxf node-v10.0.0-linux-x64.tar.gz –C /usr/local
[root@elk ~]# echo "
NODE_HOME=/usr/local/node-v10.0.0-linux-x64
PATH=\$NODE_HOME/bin:\$PATH
export NODE_HOME PATH
" >>/etc/profile
[root@elk ~]# source /etc/profile
[root@elk ~]# node --version   #检查node版本号
(2)下载head插件
[root@elk ~]# wget https://github.com/mobz/elasticsearch-head/archive/master.zip
[root@elk ~]# unzip –d /usr/local elasticsearch-head-master.zip
(3)安装grunt
[root@elk ~]# cd /usr/local/elasticsearch-head-master
[root@elk ~]# npm install -g grunt-cli
[root@elk ~]# grunt -version  #检查grunt版本号
(4)修改head源码
[root@elk ~]#vi /usr/local/elasticsearch-head-master/Gruntfile.js +95

image-20200109194143461

添加hostname,注意在上一行末尾添加逗号,hostname 不需要添加逗号

[root@elk ~]# vim /usr/local/elasticsearch-head-master/_site/app.js +4373

截屏2020-01-09下午7.38.10

原本是http://localhost:9200 ,如果head和ES不在同一个节点,注意修改成ES的IP地址

(5)下载head必要的文件
[root@elk ~]# wget https://github.com/Medium/phantomjs/releases/download/v2.1.1/phantomjs-2.1.1-linux-x86_64.tar.bz2
[root@elk ~]# yum -y install bzip2
[root@elk ~]# mkdir /tmp/phantomjs
[root@elk ~]# mv phantomjs-2.1.1-linux-x86_64.tar.bz2 /tmp/phantomjs/
[root@elk ~]# chmod 777 /tmp/phantomjs -R
(6)运行head
[root@elk ~]# cd /usr/local/elasticsearch-head-master/
[root@elk ~]# npm install 
[root@elk ~]# nohup grunt server &
[root@elk ~]# ss -tnlp
​
npm install 执行错误解析:
npm ERR! code ELIFECYCLE
npm ERR! errno 1
npm ERR! phantomjs-prebuilt@2.1.16 install: `node install.js`
npm ERR! Exit status 1
npm ERR! 
npm ERR! Failed at the phantomjs-prebuilt@2.1.16 install script.
npm ERR! This is probably not a problem with npm. There is likely additional logging output above.
​
npm ERR! A complete log of this run can be found in:
npm ERR!     /root/.npm/_logs/2021-04-21T09_49_34_207Z-debug.log
​
解决:
npm install phantomjs-prebuilt@2.1.16 --ignore-scripts  # 具体的版本按照上述报错修改

(7)测试

访问http://10.3.145.14:9100

ELK6.5+Beats6.5+Kafka2.1.0集群搭建

2、 Kibana部署
  • 服务器

安装软件主机名IP地址系统版本配置
KibanaElk10.3.145.14centos7.5.18042核4G
软件版本:nginx-1.14.2、kibana-7.13.2-linux-x86_64.tar.gz
1. 安装配置Kibana
(1)安装
[root@elk ~]# tar zxf kibana-7.13.2-linux-x86_64.tar.gz -C /usr/local/
(2)配置
[root@elk ~]# echo '
server.port: 5601
server.host: "10.3.145.14"
elasticsearch.hosts: ["http://10.3.145.14:9200"]
kibana.index: ".kibana"
i18n.locale: "zh-CN"
'>>/usr/local/kibana-7.13.2-linux-x86_64/config/kibana.yml

配置项含义:

server.port kibana服务端口,默认5601
server.host kibana主机IP地址,默认localhost
elasticsearch.url   用来做查询的ES节点的URL,默认http://localhost:9200
kibana.index        kibana在Elasticsearch中使用索引来存储保存的searches, visualizations和dashboards,默认.kibana

(3)启动
[root@elk ~]# cd /usr/local/kibana-7.13.2-linux-x86_64/
[root@elk ~]# nohup ./bin/kibana &
2. 安装配置Nginx反向代理
(1)配置YUM源:
[root@elk ~]# rpm -ivh <http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-0.el7.ngx.noarch.rpm>
(2)安装:
[root@elk ~]# yum install -y nginx httpd-tools

注意httpd-tools用于生成nginx认证访问的用户密码文件

(3)配置反向代理
[root@elk ~]# cat /etc/nginx/nginx.conf
user  nginx;
worker_processes  4;
error_log  /var/log/nginx/error.log;
pid        /var/run/nginx.pid;
worker_rlimit_nofile 65535;

events {
    worker_connections  65535;
    use epoll;
}

http {
    include       mime.types;
    default_type  application/octet-stream;

    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
                      '$status $body_bytes_sent "$http_referer" '
                      '"$http_user_agent" "$http_x_forwarded_for"';

    access_log  /var/log/nginx/access.log  main;
    server_names_hash_bucket_size 128;
    autoindex on;

    sendfile        on;
    tcp_nopush     on;
    tcp_nodelay on;

    keepalive_timeout  120;
    fastcgi_connect_timeout 300;
    fastcgi_send_timeout 300;
    fastcgi_read_timeout 300;
    fastcgi_buffer_size 64k;
    fastcgi_buffers 4 64k;
    fastcgi_busy_buffers_size 128k;
    fastcgi_temp_file_write_size 128k;

    #gzip模块设置
    gzip on; #开启gzip压缩输出
    gzip_min_length 1k;    #最小压缩文件大小
    gzip_buffers 4 16k;    #压缩缓冲区
    gzip_http_version 1.0;    #压缩版本(默认1.1,前端如果是squid2.5请使用1.0)
    gzip_comp_level 2;    #压缩等级
    gzip_types text/plain application/x-javascript text/css application/xml;    #压缩类型,默认就已经包含textml,所以下面就不用再写了,写上去也不会有问题,但是会有一个warn。
    gzip_vary on;
    #开启限制IP连接数的时候需要使用
    #limit_zone crawler $binary_remote_addr 10m;
    #tips:
    #upstream bakend{#定义负载均衡设备的Ip及设备状态}{
    #    ip_hash;
    #    server 127.0.0.1:9090 down;
    #    server 127.0.0.1:8080 weight=2;
    #    server 127.0.0.1:6060;
    #    server 127.0.0.1:7070 backup;
    #}
    #在需要使用负载均衡的server中增加 proxy_pass http://bakend/;
    server {
        listen       80;
        server_name  172.16.244.28;

        #charset koi8-r;

       # access_log  /var/log/nginx/host.access.log  main;
        access_log off;

         location / {  
             auth_basic "Kibana";   #可以是string或off,任意string表示开启认证,off表示关闭认证。
             auth_basic_user_file /etc/nginx/passwd.db;   #指定存储用户名和密码的认证文件。
             proxy_pass http://172.16.244.28:5601;
             proxy_set_header Host $host:5601;  
             proxy_set_header X-Real-IP $remote_addr;  
             proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;  
             proxy_set_header Via "nginx";  
                     }
         location /status { 
             stub_status on; #开启网站监控状态 
             access_log /var/log/nginx/kibana_status.log; #监控日志 
             auth_basic "NginxStatus"; } 

         location /head/{
             auth_basic "head";
             auth_basic_user_file /etc/nginx/passwd.db;
             proxy_pass http://172.16.244.25:9100/;
             proxy_set_header Host $host:9100;
             proxy_set_header X-Real-IP $remote_addr;
             proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
             proxy_set_header Via "nginx";
                         }  

        # redirect server error pages to the static page /50x.html
        error_page   500 502 503 504  /50x.html;
        location = /50x.html {
            root   html;
        }
    }
}
(4)配置授权用户和密码
[root@elk ~]# htpasswd -cm /etc/nginx/passwd.db kibana
(5)启动nginx
[root@elk ~]# systemctl start nginx

浏览器访问http://10.3.145.14 刚开始没有任何数据,会提示你创建新的索引。

ELK6.5+Beats6.5+Kafka2.1.0集群搭建

3、 Kafka部署
  • 服务器

安装软件主机名IP地址系统版本配置
zookeeper/kafkaKafka110.3.145.41centos7.5.18041核2G
zookeeper/kafkaKafka210.3.145.42centos7.5.18041核2G
zookeeper/kafkaKafka310.3.145.43centos7.5.18041核2G
  • 软件版本:jdk-8u121-linux-x64.tar.gz、kafka_2.11-2.0.0.tgz

  • 示例节点:10.3.145.41

1.安装配置jdk8
(1)Kafka、Zookeeper(简称:ZK)运行依赖jdk8
[root@kafka1 ~]# tar zxvf /usr/local/package/jdk-8u121-linux-x64.tar.gz -C /usr/local/
[root@kafka1 ~]# echo '
JAVA_HOME=/usr/local/jdk1.8.0_121
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME PATH
' >>/etc/profile
[root@kafka1 ~]# source /etc/profile
2.安装配置ZK

Kafka运行依赖ZK,Kafka官网提供的tar包中,已经包含了ZK,这里不再额下载ZK程序。

(1)安装
[root@kafka1 ~]# tar zxvf /usr/local/package/kafka_2.11-2.0.0.tgz -C /usr/local/
(2)配置
[root@kafka1 ~]# echo '
dataDir=/opt/data/zookeeper/data 
dataLogDir=/opt/data/zookeeper/logs
clientPort=2181 
tickTime=2000 
initLimit=20 
syncLimit=10 
server.1=10.3.145.41:2888:3888             //kafka集群IP:Port .1为id 3处要对应
server.2=10.3.145.42:2888:3888
server.3=10.3.145.43:2888:3888
'> /usr/local/kafka_2.11-2.0.0/config/zookeeper.properties

配置项含义:

dataDir ZK数据存放目录。
dataLogDir  ZK日志存放目录。
clientPort  客户端连接ZK服务的端口。
tickTime        ZK服务器之间或客户端与服务器之间维持心跳的时间间隔。
initLimit       允许follower(相对于Leaderer言的“客户端”)连接并同步到Leader的初始化连接时间,以tickTime为单位。当初始化连接时间超过该值,则表示连接失败。
syncLimit   Leader与Follower之间发送消息时,请求和应答时间长度。如果follower在设置时间内不能与leader通信,那么此follower将会被丢弃。
server.1=172.16.244.31:2888:3888    2888是follower与leader交换信息的端口,3888是当leader挂了时用来执行选举时服务器相互通信的端口。
创建data、log目录
[root@kafka1 ~]# mkdir -p /opt/data/zookeeper/{data,logs}
创建myid文件
[root@kafka1 ~]# echo 1 > /opt/data/zookeeper/data/myid

3.配置Kafka
(1)配置
[root@kafka1 ~]# echo '
broker.id=1
listeners=PLAINTEXT://10.3.145.41:9092
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/opt/data/kafka/logs
num.partitions=6
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=2
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.segment.bytes=536870912
log.retention.check.interval.ms=300000
zookeeper.connect=10.3.145.41:2181,10.3.145.42:2181,10.3.145.43:2181
zookeeper.connection.timeout.ms=6000
group.initial.rebalance.delay.ms=0
' >/usr/local/kafka_2.11-2.0.0/config/server.properties

配置项含义:

broker.id   每个server需要单独配置broker id,如果不配置系统会自动配置。
listeners       监听地址,格式PLAINTEXT://IP:端口。
num.network.threads 接收和发送网络信息的线程数。
num.io.threads          服务器用于处理请求的线程数,其中可能包括磁盘I/O。
socket.send.buffer.bytes    套接字服务器使用的发送缓冲区(SO_SNDBUF)
socket.receive.buffer.bytes 套接字服务器使用的接收缓冲区(SO_RCVBUF)
socket.request.max.bytes        套接字服务器将接受的请求的最大大小(防止OOM)
log.dirs        日志文件目录。
num.partitions  partition数量。
num.recovery.threads.per.data.dir       在启动时恢复日志、关闭时刷盘日志每个数据目录的线程的数量,默认1。
offsets.topic.replication.factor        偏移量话题的复制因子(设置更高保证可用),为了保证有效的复制,偏移话题的复制因子是可配置的,在偏移话题的第一次请求的时候可用的broker的数量至少为复制因子的大小,否则要么话题创建失败,要么复制因子取可用broker的数量和配置复制因子的最小值。
log.retention.hours 日志文件删除之前保留的时间(单位小时),默认168
log.segment.bytes   单个日志文件的大小,默认1073741824
log.retention.check.interval.ms 检查日志段以查看是否可以根据保留策略删除它们的时间间隔。
zookeeper.connect   ZK主机地址,如果zookeeper是集群则以逗号隔开。
zookeeper.connection.timeout.ms     连接到Zookeeper的超时时间。
创建log目录
[root@kafka1 ~]# mkdir -p /opt/data/kafka/logs
4、其他kafka节点配置

只需把配置好的安装包直接分发到其他节点,然后修改ZK的myid,Kafka的broker.id和listeners就可以了。

5、启动、验证ZK集群
(1)启动

在三个节点依次执行:

[root@kafka1 ~]# cd /usr/local/kafka_2.11-2.0.0/
[root@kafka1 ~]# nohup bin/zookeeper-server-start.sh config/zookeeper.properties &
(2)验证

查看ZK配置

下载nmap
[root@kafka1 ~]# yum install nmap
[root@kafka1 ~]# echo conf | nc 127.0.0.1 2181
clientPort=2181
dataDir=/opt/data/zookeeper/data/version-2
dataLogDir=/opt/data/zookeeper/logs/version-2
tickTime=2000
maxClientCnxns=60
minSessionTimeout=4000
maxSessionTimeout=40000
serverId=1
initLimit=20
syncLimit=10
electionAlg=3
electionPort=3888
quorumPort=2888
peerType=0

查看ZK状态

[root@kafka1 ~]# echo stat |nc 127.0.0.1 2181
Zookeeper version: 3.4.13-2d71af4dbe22557fda74f9a9b4309b15a7487f03, built on 06/29/2018 00:39 GMT
Clients:
 /127.0.0.1:51876[0](queued=0,recved=1,sent=0)

Latency min/avg/max: 0/0/0
Received: 2
Sent: 1
Connections: 1
Outstanding: 0
Zxid: 0x0
Mode: follower
Node count: 4

查看端口

[root@kafka1 ~]# lsof -i:2181
COMMAND   PID USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
java    15002 root   98u  IPv4  43385      0t0  TCP *:eforward (LISTEN)
6、启动、验证Kafka
(1)启动

在三个节点依次执行:

[root@kafka1 ~]# cd /usr/local/kafka_2.11-2.0.0/
[root@kafka1 ~]# nohup bin/kafka-server-start.sh config/server.properties &
(2)验证

在10.3.145.41上创建topic

[root@kafka1 ~]# bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic testtopic
Created topic "testtopic".

查询10.3.145.41上的topic

[root@kafka1 ~]# bin/kafka-topics.sh --zookeeper 10.3.145.41:2181 --list               
testtopic

查询10.3.145.42上的topic

[root@kafka1 ~]# bin/kafka-topics.sh --zookeeper 10.3.145.42:2181 --list 
testtopic

查询10.3.145.43上的topic

[root@kafka1 ~]# bin/kafka-topics.sh --zookeeper 10.3.145.43:2181 --list 
testtopic

模拟消息生产和消费 发送消息到10.3.145.41

[root@kafka1 ~]# bin/kafka-console-producer.sh --broker-list 10.3.145.41:9092 --topic testtopic  
>Hello World!

从10.3.145.42接受消息

[root@kafka1 ~]# bin/kafka-console-consumer.sh --bootstrap-server  10.3.145.41:9092 --topic testtopic --from-beginning 
Hello World!
7、监控 Kafka Manager

Kafka-manager 是 Yahoo 公司开源的集群管理工具。

可以在 Github 上下载安装:GitHub - yahoo/CMAK: CMAK is a tool for managing Apache Kafka clusters

亿级 ELK 日志平台构建实践

如果遇到 Kafka 消费不及时的话,可以通过到具体 cluster 页面上,增加 partition。Kafka 通过 partition 分区来提高并发消费速度

亿级 ELK 日志平台构建实践

4、 Logstash部署
  • 服务器

安装软件主机名IP地址系统版本配置
LogstashElk10.3.145.14centos7.5.18042核4G
  • 软件版本:logstash-7.13.2.tar.gz

1.安装配置Logstash

Logstash运行同样依赖jdk,本次为节省资源,故将Logstash安装在了10.3.145.14节点。

(1)安装
[root@elk ~]# tar zxf /usr/local/package/logstash-7.13.2.tar.gz -C /usr/local/
(2)测试文件

标准输入=>标准输出

1、启动logstash

2、logstash启动后,直接进行数据输入

3、logstash处理后,直接进行返回

input {
	stdin {}
}
output {
	stdout {
		codec => rubydebug
	}
}

标准输入=>标准输出及es集群

1、启动logstash

2、启动后直接在终端输入数据

3、数据会由logstash处理后返回并存储到es集群中

input {
	stdin {}
}
output {
	stdout {
		codec => rubydebug
	}
	elasticsearch {
      hosts => ["10.3.145.14","10.3.145.56","10.3.145.57"]
      index => 'logstash-debug-%{+YYYY-MM-dd}'
    }
}

端口输入=>字段匹配=>标准输出及es集群

1、由tcp 的8888端口将日志发送到logstash

2、数据被grok进行正则匹配处理

3、处理后,数据将被打印到终端并存储到es

input {
	tcp {
		port => 8888
	}
}
filter {
	grok {
		match => {"message" => "%{DATA:key} %{NUMBER:value:int}"} 
			
	}
}
output {
	stdout {
		codec => rubydebug
	}
	elasticsearch {
      hosts => ["10.3.145.14","10.3.145.56","10.3.145.57"]
      index => 'logstash-debug-%{+YYYY-MM-dd}'
    }
}
# yum install -y nc
# free -m |awk 'NF==2{print $1,$3}' |nc logstash_ip 8888

文件输入=>字段匹配及修改时间格式修改=>es集群

1、直接将本地的日志数据拉去到logstash当中

2、将日志进行处理后存储到es

input {
	file {
		type => "nginx-log"
		path => "/var/log/nginx/error.log"
		start_position => "beginning" # 此参数表示在第一次读取日志时从头读取
		# sincedb_path => "自定义位置"  # 此参数记录了读取日志的位置,默认在 data/plugins/inputs/file/.sincedb*
		
	}
}
filter {
    grok {
        match => { "message" => '%{DATESTAMP:date} [%{WORD:level}] %{DATA:msg} client: %{IPV4:cip},%{DATA}"%{DATA:url}"%{DATA}"%{IPV4:host}"'}    
    }    
    date {
        match => [ "timestamp" , "dd/MMM/YYYY:HH:mm:ss Z" ]    
    }    
}

output {
  if [type] == "nginx-log" {
        elasticsearch {
      		hosts => ["192.168.249.139:9200","192.168.249.149:9200","192.168.249.159:9200"]
      		index => 'logstash-audit_log-%{+YYYY-MM-dd}'
      }
    }
  }

filebeat => 字段匹配 => 标准输出及es

input {
  beats {
    port => 5000
  }
}
filter {
	grok {
		match => {"message" => "%{IPV4:cip}"}	
	}
}
output {
        elasticsearch {
      		hosts => ["192.168.249.139:9200","192.168.249.149:9200","192.168.249.159:9200"]
      		index => 'test-%{+YYYY-MM-dd}'
      }
	stdout { codec => rubydebug }
}

(3)配置

创建目录,我们将所有input、filter、output配置文件全部放到该目录中。

[root@elk ~]# mkdir -p /usr/local/logstash-7.13.2/etc/conf.d
[root@elk ~]# vim /usr/local/logstash-7.13.2/etc/conf.d/input.conf
input { 
kafka {
    type => "audit_log"
    codec => "json"
    topics => "nginx"
    decorate_events => true
    bootstrap_servers => "10.3.145.41:9092, 10.3.145.42:9092, 10.3.145.43:9092"
  }
}

[root@elk ~]# vim /usr/local/logstash-7.13.2/etc/conf.d/filter.conf
filter {
	json { # 如果日志原格式是json的,需要用json插件处理
		source => "message"
		target => "nginx" # 组名
	}
}

[root@elk ~]# vim /usr/local/logstash-7.13.2/etc/conf.d/output.conf
output {
  if [type] == "audit_log" {
      elasticsearch {
      hosts => ["10.3.145.14","10.3.145.56","10.3.145.57"]
      index => 'logstash-audit_log-%{+YYYY-MM-dd}'
      }
    }
  }

(3)启动

[root@elk ~]# cd /usr/local/logstash-7.13.2
[root@elk ~]# nohup bin/logstash -f etc/conf.d/  --config.reload.automatic &
5、Filebeat 部署

为什么用 Filebeat ,而不用原来的 Logstash 呢?

原因很简单,资源消耗比较大。

由于 Logstash 是跑在 JVM 上面,资源消耗比较大,后来作者用 GO 写了一个功能较少但是资源消耗也小的轻量级的 Agent 叫 Logstash-forwarder。

后来作者加入 elastic.co 公司, Logstash-forwarder 的开发工作给公司内部 GO 团队来搞,最后命名为 Filebeat。

Filebeat 需要部署在每台应用服务器上,可以通过 Salt 来推送并安装配置。

  • 服务器

安装软件主机名IP地址系统版本配置
filebeatKafka310.3.145.43centos7.5.18041核2G
  • 软件版本 filebeat-7.13.2-x86_64.rpm

(1)下载
[root@kafka3 ~]# curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.13.2-x86_64.rpm
(2)解压
[root@kafka3 ~]# yum install -y filebeat-7.13.2-x86_64.rpm
(3)修改配置

修改 Filebeat 配置,支持收集本地目录日志,并输出日志到 Kafka 集群中

[r
oot@kafka3 ~]# vim filebeat.yml
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/nginx/access.log
output.logstash:
  hosts: ["192.168.52.134:5000"]

output.kafka:   
  hosts: ["10.3.145.41:9092","10.3.145.42:9092","10.3.145.43:9092"]
  topic: 'nginx'
# 注意,如果需要重新读取,请删除/data/registry目录 

Filebeat 6.0 之后一些配置参数变动比较大,比如 document_type 就不支持,需要用 fields 来代替等等。

(4)启动
[root@kafka3 ~]# ./filebeat -e -c filebeat.yml

(5)配置nginx
因为日志格式的切割需要json格式,kibana中会报错 error decoding json,所以在这里我们将nginx的日志格式修改为json格式。


[root@kafka3 ~]# vim /etc/nginx/nginx.conf
#    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
#                      '$status $body_bytes_sent "$http_referer" '
#                      '"$http_user_agent" "$http_x_forwarded_for"';
     log_format main        '{"user_ip":"$http_x_real_ip","lan_ip":"$remote_addr","log_time":"$time_iso8601","user_req":"$request","http_code":"$status","body_bytes_sents":"$body_bytes_sent","req_time":"$request_time","user_ua":"$http_user_agent"}';
    access_log  /var/log/nginx/access.log  main;

image-20200110143653750

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1247940.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PyQt6库和工具库QTDesigner安装与配置

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计12条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

Selenium实战指南:安装、使用技巧和JavaScript注入案例解析

背景 ​ 最近一段时间我会重新开一个关于selenium的专题&#xff0c;由浅入深的给大家讲一下selenium&#xff0c;同时回顾一下之前学的内容&#xff0c;selenium可以实现模拟登录&#xff0c;动态数据获取&#xff0c;获取动态cookie等等&#xff0c;还有可以写一些抢p的脚本…

游戏测试大揭秘,帮你轻松过关!

游戏测试可以看作是软件测试的一个分支&#xff0c;黑盒测试最基本的要求是会玩游戏。小公司会要求测试能力更加全面的员工&#xff0c;其中除了功能测试还要会性能测试&#xff0c;兼容测试&#xff0c;弱网测试&#xff0c;自动化测试等。 游戏测试是游戏开发过程中必不可少…

Markdown如何自定义字体样式:字体颜色、背景、斜体、粗体

Markdown如何自定义字体样式&#xff1a;字体颜色、背景、斜体、粗体 文章目录 Markdown如何自定义字体样式&#xff1a;字体颜色、背景、斜体、粗体前言一、字体大小二、字体颜色1. 英文字母2. 十六进制颜色值 三、字体背景色三、字体类型四、字体加粗五、字体斜体六、混合使用…

2.19 keil里面工具EventCorder使用方法

设置方法如下&#xff1a; 添加初始化代码如下&#xff1a; eventRecord.c #include "eventRecord.h" #include "usart.h" extern UART_HandleTypeDef *pcControlUart;/* RecordEvent初始化 */ void InitEventRecorder(void) {#ifdef RTE_Compiler_Even…

【免费使用】基于PaddleSeg开源项目开发的人像抠图Web API接口

基于PaddleSeg开源项目开发的人像抠图API接口&#xff0c;服务器不存储照片大家可放心使用。 1、请求接口 请求地址&#xff1a;http://apiseg.hysys.cn/predict_img 请求方式&#xff1a;POST 请求参数&#xff1a;{"image":"/9j/4AAQ..."} 参数是jso…

Leetcode—1410.HTML实体解析器【中等】

2023每日刷题&#xff08;三十八&#xff09; Leetcode—1410.HTML实体解析器 算法思想 实现代码 typedef struct entityChar {char* entity;char rechar; }entity;entity matches[] {{"&quot;", "},{"&apos;", \},{"&amp;"…

【工具使用】Keil工具的使用——常用配置介绍

Keil调试具体教程学习 目录 ​​​​​​​Keil调试具体教程学习 常用功能总结 &#xff08;2&#xff09;目标设置&#xff08;Target&#xff09; ①设置晶振频率 ②跨模块优化选项 ③微库选项 &#xff08;3&#xff09;输出设置&#xff08;Output&#xff09; ①…

【自主探索】基于 frontier_exploration 的单个机器人自主探索建图

文章目录 一、概述1、功能2、要求 二、使用方法1、用于运行演示2、用于开发人员2.1. 探索无/地图数据2.2. 使用 /map 数据进行探索 三、提供的组件1、explore_client1.1. 调用的操作1.2. 订阅主题1.3. 发布主题 2、explore_server2.1. 提供的操作2.2. 调用的操作2.3. 调用的服务…

手把手教你,怎么制作出满意的组织架构图

组织架构图在企业管理中起着重要的作用&#xff0c;它可以清晰地展示一个组织的层级结构、职责分工和工作流程。通过组织架构图&#xff0c;领导者可以更好地了解和掌握企业的人员组成和管理情况&#xff0c;帮助他们做出更明智的决策。此外&#xff0c;组织架构图也可以提高企…

首先啊骚年们我们必须先了解网络安全这个行业究竟是干啥的。

导 读 近年来&#xff0c;人工智能、5G、量子信息技术、工业互联网、大数据、云计算、物联网、虚拟现实、区块链等具有颠覆性的战略性新技术突飞猛进&#xff0c;但伴随着互联网技术的发展&#xff0c;网络安全问题也日趋多样化&#xff0c;甚至严重威胁到国家、企业&#xff…

03.依赖倒置原则(Dependence Inversion Principle)

概述 高层模块不应依赖低层模块&#xff0c;二者都应该依赖其抽象。而抽象不应依赖细节&#xff0c;细节应该依赖抽象。依赖倒置原则的中心思想其实就是面向接口编程。 相对于细节的多变性&#xff0c;抽象的东西会稳定的多&#xff0c;所以以抽象为基础搭建的架构自然也会比以…

【Tiny_CD】Tiny_CD变化检测网络详解(含python代码)

题目:TinyCD: A (Not So) Deep Learning Model For Change Detection 论文:paper 代码:code 目录 🍟 🍟1.摘要 🍗🍗 2.贡献 🍖🍖 3.网络结构

语音合成综述Speech Synthesis

一、语音合成概述 语音信号的产生分为两个阶段&#xff0c;信息编码和生理控制。首先在大脑中出现某种想要表达的想法&#xff0c;然后由大脑将其编码为具体的语言文字序列&#xff0c;及语音中可能存在的强调、重读等韵律信息。经过语言的组织&#xff0c;大脑通过控制发音器…

python中pprint()与print()

平常经常使用print()&#xff0c;今天突然看到pprint()&#xff0c;好奇查了下&#xff0c;记录。 统而言之&#xff0c;pprint()更适合打印结构化数据&#xff0c;对于可读性有很大的提升 这里有两个对象在一个arry里面&#xff0c;普通的print直接全部打印出来&#xff0c;而…

贝锐花生壳:无需公网IP、简单3步,远程访问群晖NAS

面对NAS远程访问难题&#xff0c;贝锐花生壳一招搞定&#xff01;并且无需公网IP、简单3步&#xff0c;即可实现固定域名远程访问NAS。 步骤1&#xff1a; 目前&#xff0c;群晖NAS已在套件中心内置花生壳客户端。 浏览器进入群晖NAS的DSM管理界面&#xff0c;点击【套件中心】…

机器学习算法(1)——简单线性回归

一、说明 在在这篇文章中&#xff0c;我们将学习我们的第一个机器学习算法&#xff0c;称为简单线性回归。这是一个重要的算法&#xff0c;因为当您可能正在学习第一个神经网络&#xff08;称为人工神经网络&#xff09;时&#xff0c;在此算法中学习的技术也适用于深度学习。我…

OpenStack云计算平台

目录 一、OpenStack 1、简介 2、硬件需求 3、网络 二、环境搭建 1、安全 2、主机网络 3、网络时间协议(NTP) 4、OpenStack包 5、SQL数据库 6、消息队列 7、Memcached 一、OpenStack 1、简介 官网&#xff1a;https://docs.openstack.org/2023.2/ OpenStack系统由…

简单使用YOLOv5自己训练模型

使用YOLOv5自己训练模型 前言&#xff1a;本文基于我的另一篇文章作为基础&#xff0c;文章戳这里&#xff0c;主要还是实操为主&#xff0c;让大家能快速上手使用。 数据集构建 1.准备工作 数据收集&#xff1a; 图片类型数据 视频类型数据&#xff08;使用opencv进行视频…

矩阵论(Matrix)

​ 大纲 矩阵微积分&#xff1a;多元微积分的一种特殊表达&#xff0c;尤其是在矩阵空间上进行讨论的时候逆矩阵(inverse matrix)矩阵分解&#xff1a;特征分解&#xff08;Eigendecomposition&#xff09;&#xff0c;又称谱分解&#xff08;Spectral decomposition&#xf…