开源语音大语言模型来了!阿里基于Qwen-Chat提出Qwen-Audio!

news2024/11/16 1:24:51

论文链接:https://arxiv.org/pdf/2311.07919.pdf

开源代码:https://github.com/QwenLM/Qwen-Audio

引言

大型语言模型(LLMs)由于其良好的知识保留能力、复杂的推理和解决问题能力,在通用人工智能(AGI)领域取得了重大进展。然而,语言模型缺乏像人类一样感知非文本模态(如图像和音频)的能力。作为一种重要模态,语音提供了超越文本的多样且复杂的信号,如人声中的情感、语调和意图,自然声音中的火车汽笛、钟声和雷声,以及音乐中的旋律。使LLMs能够感知和理解丰富的音频信号以进行音频交互引起了广泛关注。

以前关于遵循指令的工作主要是通过继承大型(多模态)LLMs的能力,采用轻量级的监督微调来激活模型的能力以与用户意图对齐。然而,由于缺乏能够处理各种音频类型和任务的预训练音频语言模型,大多数工作在音频交互能力上受到限制。现有的代表性音频语言多任务语言模型,如SpeechNet、SpeechT5、VIOLA 、Whisper和Pengi,仅限于处理特定类型的音频,如人声或自然声音。

简介

为了促进音频-文本多模态社区的增长和发展,我们引入了Qwen-Audio,一个大规模音频语言模型。Qwen-Audio是一个以音频和文本输入为条件的多任务语言模型,扩展了Qwen-7B语言模型,通过连接单个音频编码器有效地感知音频信号。与以往主要迎合单一类型的音频(如人声)的工作不同,或者专注于特定任务(如语音识别和字幕),或者将模型限制在单一语言上,我们扩大了训练规模,涵盖了超过30个任务、八种语言和各种音频类型,以推进通用音频理解能力的发展。

多任务和多数据集共同训练面临的一个重要挑战是不同数据集关联的文本标签的相当大的变化。这种变化源于任务目标、语言、注释粒度和文本结构(结构化或非结构化)的差异。为了解决这个一对多的挑战,我们精心设计了一个多任务训练框架,将解码器的输出条件为一系列分层标签。这种设计鼓励知识共享,并通过共享和指定标签来减少干扰。此外,我们还将语音识别与基于字级时间戳预测(SRWT)的任务结合起来进行训练,这在以前的多任务学习研究中通常被忽视。我们发现这个任务不仅在超越语音信号的基于语音的问题回答任务(如声音和音乐)方面改进了接地任务,还改善了ASR的性能。

图片

方法与模型

本文介绍了Qwen-Audio和Qwen-Audio-Chat的详细信息,这两个系统旨在实现基于人类指令的通用音频理解和灵活交互。我们的模型训练过程包括两个阶段:多任务预训练和监督微调。

图片

Qwen-Audio模型的结构如图所示。Qwen-Audio包含一个音频编码器和一个大型语言模型。给定成对数据(a, x),其中a和x表示音频序列和文本序列,训练目标是最大化下一个文本标记的概率。

图片

在给定音频表示和之前的文本序列x<t的条件下,θ和ϕ分别表示llm(large language model,大语言模型)和音频编码器的可训练参数。

音频编码器

Qwen-Audio采用单个音频编码器来处理各种类型的音频。音频编码器的初始化基于Whisper-large-v2模型 ,这是一个包含两个卷积下采样层作为起始层的32层Transformer模型。音频编码器由640M个参数组成。虽然Whisper是针对语音识别和翻译进行监督训练的,但它的编码表示仍然包含丰富的信息,如背景噪音,甚至可以用于恢复原始语音。为了预处理音频数据,Whisper将其重新采样为16kHz的频率,并使用25ms的窗口大小和10ms的跳跃大小将原始波形转换为80通道的Mel频谱图。此外,还加入了一个步幅为2的池化层以减少音频表示的长度。因此,编码器输出的每一帧大约对应于原始音频信号的40ms片段。在训练时应用了SpecAugment作为数据增强方法。

大语言模型

Qwen-Audio采用了一个大语言模型作为其基础组件。该模型使用从Qwen-7B导出的预训练权重进行初始化。Qwen-7B是一个32层Transformer解码模型,隐藏大小为4096,总共有77亿个参数。

多任务预训练

受Whisper的启发 ,为了将不同类型的音频结合起来,我们提出了一个多任务训练格式框架,如下所示: 

• 转录标签:使用转录标签表示预测的开始。<|startoftranscripts|>用于指示任务涉及对口语的准确转录和捕获语音记录的语言内容,例如语音识别和语音翻译任务。对于其他任务,使用<|startofanalysis|>标签。 

• 音频语言标签:然后,我们引入了一个语言标签,用于指示音频中的口语语言。该标签使用一个唯一的令牌来表示训练集中存在的每种语言,总共有八种语言。在音频片段不包含任何语音的情况下,例如自然声音和音乐,模型被训练来预测一个 <|unknown|> 令牌。 

• 任务标签:接下来的标记指定了任务类型。我们将收集到的音频任务分为五种类别:<|transcribe|>(转录)、<|translate|>(翻译)、<|caption|>(字幕)、<|analysis|>(分析)和 <|question-answer|>(问答)任务。对于问答(QA)任务,我们在标签后添加相应的问题。 

• 文本语言标签:标签令牌指定输出文本序列的语言。 

• 时间戳标记:存在一个<|timestamps|>或<|notimestamps|>的标记决定模型是否需要预测时间戳。与Whisper中使用的句级时间戳不同,<|timestamps|>标记的包含需要模型进行细粒度的词级时间戳预测,简称为SRWT(带有词级时间戳的语音识别)。这些时间戳的预测与转录单词交叉进行:每个转录单词之前预测开始时间标记,而每个转录单词之后预测结束时间标记。根据我们的实验,SRWT提高了模型对音频信号与时间戳对齐的能力。这种改进的对齐有助于模型对语音信号进行全面理解,从而在诸多任务中取得显著进展,如语音识别和音频问答任务。

• 最后,我们提供输出说明,以进一步明确不同子任务的任务和所需格式,然后文本输出开始。我们框架的指导原则是通过共享标签来最大化类似任务之间的知识共享,从而提高它们的性能。同时,我们确保可以区分不同的任务和输出格式,以避免模型中的一对多映射问题。

图片

监督微调

多任务模型的广泛预训练使其具备了广泛的音频理解能力。在此基础上,我们采用基于指示的微调技术来提高模型与人类意图的对齐能力,从而得到一个交互式聊天模型,命名为Qwen-Audio-Chat。 

为了实现这一目标,我们为每个任务手动创建演示。这些演示包括原始文本标签、问题和答案。然后,我们利用GPT-3.5 根据提供的原始文本标签生成更多的问题和答案。此外,我们还通过手动注释、模型生成和策略串联的方式创建了一个音频对话数据集。这个数据集帮助我们将推理、故事生成和多图像理解能力融入到我们的模型中。

为了有效处理多音频对话和多个音频输入,我们引入了使用 "Audio id:" 标记不同音频的约定,其中 id对应音频输入对话的顺序。在对话格式方面,我们使用ChatML (Openai)格式构建我们的指示微调数据集。在这个格式中,每个交互的陈述都用两个特殊标记(和)标注,以便促进对话的终止。

为了在多轮对话中实现对音频和纯文本模态的灵活输入,我们在训练过程中使用了上述提到的音频为中心的指令数据和纯文本指令数据的组合。这种方法使模型能够无缝处理多种形式的输入。指令调整数据的总量为20k。

图片

实验与结果

对于多任务预训练,我们冻结LLM的权重,只优化音频编码器。我们将训练得到的模型称为Qwen-Audio。在随后的监督微调阶段,我们固定音频编码器的权重,只优化LLM。得到的模型被标记为Qwen-Audio-Chat。

图片

为了评估Qwen-Audio的普适理解能力,我们进行了全面评估,包括自动语音识别(ASR)、语音到文本翻译(S2TT)、自动音频字幕生成(AAC)、声场分类(ASC)、语音情绪识别(SER)、音频问答(AQA)、声音分类(VSC)和音符分析(MNA)等多个任务。该评估在12个数据集上进行,为避免数据泄露,评估数据集严格排除训练数据。

12个数据集测评结果

图片

我们首先检查其英文自动语音识别(ASR)结果,其中Qwen-Audio在与前期多任务学习模型相比表现出更好的性能。具体而言,它在librispeech测试集的test-clean和test-other数据集上分别实现了2.0%和4.2%的词错误率(WER)。类似地,中文普通话ASR的结果显示Qwen-Audio在与之前的方法相比具备竞争力的性能。据我们所知,Qwen-Audio在Aishell1 dev和test数据集上取得了最先进的结果。此外,我们评估了Qwen-Audio在CoVoST2数据集上的语音翻译性能。

 Qwen-Audio-Chat 的对话示例

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1247878.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL与Redis如何保证数据的一致性

文章目录 MySQL与Redis如何保证数据的一致性&#xff1f;不好的方案1. 先写 MySQL&#xff0c;再写 Redis2. 先写 Redis&#xff0c;再写 MySQL3. 先删除 Redis&#xff0c;再写 MySQL 好的方案4. 先删除 Redis&#xff0c;再写 MySQL&#xff0c;再删除 Redis5. 先写 MySQL&am…

生产环境出现问题,测试人如何做工作复盘?

很多时候我们能把大部分的Bug或一些部署等问题在业务上线之前就解决了&#xff0c;但由于某些因素&#xff0c;线上问题还是时而出现&#xff0c;影响业务生产甚至是公司效益。 避免线上问题的发生以及线上问题及时处理是测试人员的一项重要职责&#xff0c;如何快速地处理&am…

0001Java程序设计-springboot基于微信小程序批发零售业商品管理系统

文章目录 **摘 要****目录**系统实现开发环境 编程技术交流、源码分享、模板分享、网课分享 企鹅&#x1f427;裙&#xff1a;776871563 摘 要 本毕业设计的内容是设计并且实现一个基于微信小程序批发零售业商品管理系统。它是在Windows下&#xff0c;以MYSQL为数据库开发平台…

Postman接口测试 —— Jenkins实现持续集成构建流程!

一、从Postman导出集合和环境变量等Json文件 将设计好的接口测试用例集合&#xff0c;局部变量&#xff0c;环境变量&#xff0c;参数文件等都放在PostmanTest目录下 二、打开Jenkins&#xff0c;创建测试项目Postman 已安装Jenkins&#xff0c;安装方法自行百度&#xff0c;Je…

PyQt6第一个程序HelloWorld实现

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计12条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

unittest指南——不拼花哨,只拼实用

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

BGP联邦及路由反射器配置

需求 1 AS1存在两个环回&#xff0c;一个地址为192.168.1.0/24&#xff0c;该地址不能再任何协议中宣告 AS3存在两个环回&#xff0c;一个地址为192.168.2.0/24&#xff0c;该地址不能再任何协议中宣告 AS1还有一个环回地址为10.1.1.0/24&#xff0c;AS3另一个环回地址是11.1.1…

树形 DP:树的直径

leetCode 104.二叉树的最大深度104. 二叉树的最大深度 - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int maxDepth(TreeNode* root) {if(root nullptr) return 0;int lDepth maxDepth(root->left);int rDepth maxDepth(root->right);return max(l…

HashMap的实现原理,HashMap方法详解,hash()计算的原理,扩容机制

文章目录 说一下HashMap的实现原理(非常重要)①HashMap的工作原理HashMap存储结构常用的变量HashMap 构造函数tableSizeFor() put()方法详解hash()计算原理resize() 扩容机制get()方法为什么HashMap链表会形成死循环 说一下HashMap的实现原理(非常重要) HashMap概述&#xff1…

冷空气来袭,关注身体状况,手表这几个功能速get

进入小雪节气后&#xff0c;冷空气活动更加频繁&#xff0c;气温会越来越低&#xff0c;或进入感冒发烧的高发期。大家在感觉到身体不适时&#xff0c;要多关注一下自己的体温、血氧饱和度、心率等指标&#xff0c;通过手表就可以掌握这些身体讯号&#xff0c;速来了解一下&…

SQL 通配符:用于模糊搜索和匹配的 SQL 关键技巧

SQL通配符字符 通配符字符用于替代字符串中的一个或多个字符。通配符字符与LIKE运算符一起使用。LIKE运算符用于在WHERE子句中搜索列中的指定模式。 示例 返回所有以字母 ‘a’ 开头的客户&#xff1a; SELECT * FROM Customers WHERE CustomerName LIKE a%;通配符字符 符…

智能WIFI 电子标签

7.5/10.2/13.3寸大屏电子墨水屏高清显示 无需部署专用基站&#xff0c;基于标准WIFI网络通信实时在线 无需接线&#xff0c;极简安装 超低功耗&#xff1a;充一次电续航一年~ 系统联动&#xff0c;信息统一&#xff0c;WiFi控制&#xff0c;批量快速刷新 随改随变化&#…

【数据分享】我国12.5米分辨率的DEM地形数据(免费获取/地理坐标系)

DEM地形数据是我们在各种研究和设计中经常使用的数据&#xff01;之前我们分享过500米分辨率的DEM地形数据、90米分辨率的DEM地形数据、30米分辨率的DEM地形数据&#xff08;均可查看之前的文章获悉详情&#xff09;。 本次我们为大家带来的是分辨率为12.5m的DEM地形数据&#…

Linux后台运行Python的py文件,如何使ssh工具退出后仍能运行

常规运行 python3 mysqlbak.py ssh工具退出后&#xff0c;或ctrlc中断后&#xff0c;程序将不在运行 后台运行 nohup python3 mysqlbak.py > mysqlbak.log & > mysqlbak.log为可选项&#xff0c;输出日志到指定文件&#xff0c;如果不写&#xff0c;输出日志到nohup…

CENTOS8.2下的内核启动参数cmdline更新

error: environment block too small. 删掉grubenv重新生成。 查看是什么方式启动 [rootlocalhost boot]# [ -d /sys/firmware/efi ] && echo UEFI || echo BIOS UEFI 先改etc/default/grub GRUB_CMDLINE_LINUX"consolettyS0,115200n8 crashkernelauto ignore_…

大语言模型概述(一):基于亚马逊云科技的研究分析与实践

大型语言模型指的是具有数十亿参数&#xff08;B&#xff09;的预训练语言模型&#xff08;例如&#xff1a;GPT-3, Bloom, LLaMA)。这种模型可以用于各种自然语言处理任务&#xff0c;如文本生成、机器翻译和自然语言理解等。 大语言模型的这些参数是在大量文本数据上训练的。…

LeeCode前端算法基础100题(2)- 最多水的容器

一、问题详情&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;…

C++ 之win32多线程应用总结

InterlockedIncrement 函数的作用&#xff1a; 在多线程同时对一个变量访问时&#xff0c;保证一个线程访问变量时其他线程不能访问 事件是很常用的多线程同步互斥机制 HANDLE CreateEvent(LPSECURITY_ATTRIBUTES lpEventAttributes, // SECURITY_ATTRIBUTES结构指针&…

长文讲清荧光定量PCR(最新版)q-pcr rt-pcr

为讲透qPCR&#xff0c;我会持续更新本文&#xff0c;点关注追踪查看。 1.初阶认识 这个阶段&#xff0c;我们要明白一些概念和术语&#xff0c;避免自己在师兄面前错误的瞎哔哔&#xff0c;比如&#xff1a; 问&#xff1a;RT-PCR、qPCR、Real-time PCR、real-time RT-PCR有…

青云科技容器平台与星辰天合存储产品完成兼容性互认证

近日&#xff0c; 北京青云科技股份有限公司&#xff08;以下简称&#xff1a;青云科技&#xff09;的 KubeSphere 企业版容器平台成功完成了与 XSKY星辰天合的企业级分布式统一数据平台 V6&#xff08;简称&#xff1a;XEDP&#xff09;以及天合翔宇分布式存储系统 V6&#xf…