竞赛选题 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测

news2024/11/16 19:54:30

文章目录

  • 0 简介
  • 1 基于 Keras 用 LSTM 网络做时间序列预测
  • 2 长短记忆网络
  • 3 LSTM 网络结构和原理
    • 3.1 LSTM核心思想
    • 3.2 遗忘门
    • 3.3 输入门
    • 3.4 输出门
  • 4 基于LSTM的天气预测
    • 4.1 数据集
    • 4.2 预测示例
  • 5 基于LSTM的股票价格预测
    • 5.1 数据集
    • 5.2 实现代码
  • 6 lstm 预测航空旅客数目
    • 数据集
    • 预测代码
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

future_target = 72
x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,
                                                 TRAIN_SPLIT, past_history,
                                                 future_target, STEP)
x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],
                                             TRAIN_SPLIT, None, past_history,
                                             future_target, STEP)

划分数据集

train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()

val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
    plt.figure(figsize=(12, 6))
    num_in = create_time_steps(len(history))
    num_out = len(true_future)

    plt.plot(num_in, np.array(history[:, 1]), label='History')
    plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',
           label='True Future')
    if prediction.any():
        plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',
                 label='Predicted Future')
    plt.legend(loc='upper left')
    plt.show()
for x, y in train_data_multi.take(1):
  multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(tf.keras.layers.LSTM(32,
                                          return_sequences=True,
                                          input_shape=x_train_multi.shape[-2:]))
multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
multi_step_model.add(tf.keras.layers.Dense(72))

multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                          steps_per_epoch=EVALUATION_INTERVAL,
                                          validation_data=val_data_multi,
                                          validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
plt.rcParams['font.sans-serif']=['SimHei']#显示中文
plt.rcParams['axes.unicode_minus']=False#显示负号

def load_data():
    test_x_batch = np.load(r'test_x_batch.npy',allow_pickle=True)
    test_y_batch = np.load(r'test_y_batch.npy',allow_pickle=True)
    return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):
    cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanh
    return cell

#定义lstm网络
def lstm_net(x,w,b,num_neurons):
    #将输入变成一个列表,列表的长度及时间步数
    inputs = tf.unstack(x,8,1)
    cells = [lstm_cell(units=n) for n in num_neurons]
    stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)
    outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)
    return tf.matmul(outputs[-1],w) + b

#超参数
num_neurons = [32,32,64,64,128,128]

#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))

#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)

#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())

if __name__ == '__main__':

    #开启交互式Session
    sess = tf.InteractiveSession()
    saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')

    #载入数据
    test_x,test_y = load_data()

    #预测
    predicts = sess.run(pred,feed_dict={x:test_x})
    predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准

    #可视化
    plt.plot(predicts,'r',label='预测曲线')
    plt.plot(test_y,'g',label='真实曲线')
    plt.xlabel('第几天/days')
    plt.ylabel('开盘价(归一化)')
    plt.title('股票开盘价曲线预测(测试集)')
    plt.legend()
	plt.show()
    #关闭会话
    sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import os
 
# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4   # 序列长度
n_feature = 12   # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。
 
# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)
 
trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):
    tmp_x = data[i:i+seq_length, :]
    tmp_y = data[i+seq_length, :]
    trainData_x.append(tmp_x)
    trainData_y.append(tmp_y)
 
# model
class Net(nn.Module):
    def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):
        super(Net, self).__init__()
        self.in_dim = in_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.n_layer = n_layer
        self.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)
        self.linear = nn.Linear(hidden_dim, output_dim)
 
    def forward(self, x):
        _, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state
                                      # h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)
                                      # n_direction根据是“否为双向”取值为1或2
        h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)
        h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)
        return h_out
 
train = True
if train:
    model = Net()
    loss_func = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    # train
    for epoch in range(EPOCH):
        total_loss = 0
        for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)
            X = torch.tensor(X).float()
            X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsize
            output = model(X)       # output's shape (1,12)
            output = torch.squeeze(output)
            loss = loss_func(output, torch.tensor(trainData_y[iteration]))
            optimizer.zero_grad()   # clear gradients for this training iteration
            loss.backward()         # computing gradients
            optimizer.step()        # update weights
            total_loss += loss
 
        if (epoch+1) % 20 == 0:
            print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))
    # torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825
    torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')
 
else:
    # model = torch.load('flight_model.pth')
    model = Net()
    checkpoint = torch.load('checkpoint.pth.tar')
    model.load_state_dict(checkpoint['state_dict'])
 
# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)
    X = torch.tensor(X).float()
    X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsize
    output = model(X)             # output's shape (1,12)
    output = torch.squeeze(output)
    predict.append(output.data.numpy())
 
# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')
 
data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')
 
plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1247575.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

理解CLIP模型

1.简介 学习深度学习必看CLIP!论文链接arxiv.org/pdf/2103.00020v1.pdf。 简单来说就是传统的分类任务被用来预测指定的类别,有监督训练限制了模型的通用性和可用性,并且需要带有标签的数据来训练,该篇论文就想直接从原始文本中…

酵母双杂交服务专题(一)

酵母双杂交系统是一种在酵母这种真核生物模型中执行的实验方法,用于探索活细胞内部蛋白质间的相互作用。这种技术能够敏感地捕捉蛋白质间的细微和短暂相互作用,通过检测报告基因的表达产物来实现。作为一种高度灵敏的技术,酵母双杂交系统被广…

Ubuntu下使用protoBuf

一、protobuf简介: 1.1 protobuf的定义: protobuf是用来干嘛的? protobuf是一种用于 对结构数据进行序列化的工具,从而实现 数据存储和交换。 (主要用于网络通信中 收发两端进行消息交互。所谓的“结构数据”是指类…

亚马逊运营中动态/静态住宅IP代理的应用有哪些?

作为全球最大的电商平台之一,亚马逊已经成为许多商家的首选销售平台。而代理IP作为近几天互联网的热门工具,在跨境电商界也起着非常强大的作用。那么在亚马逊运营中,适合动态住宅代理还是静态住宅代理呢?下面我们一起来探索&#…

数据挖掘之PCA-主成分分析

PCA的用处:找出反应数据中最大变差的投影(就是拉的最开)。 在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的 但是什么时候信息保留的最多呢?具体一点&#…

Linux:Ubuntu系统安装软件

本次以安装vim为例 sudo apt-get remove vim //卸载vim sudo apt-get install vim //安装vim sudo apt-cache show vim //获取vim软件信息安装时间较长。 安装完成后,执行下第三条指令,测试下是否安装成功即可。

【element优化经验】el-dialog修改title样式

目录 前言 解决之路 1.把默认的这个图标隐藏,官方的api有这个属性:showClose值设置false. 2.title插槽定制:左边定制标题,右边定制按钮区域。 3.背景颜色修改:默认title是有padding的需要把它重写调,然…

Ubuntu 安装 JMeter:轻松上手

Apache JMeter 是一个开源的负载测试工具,可以用于测试静态和动态资源,确定服务器的性能和稳定性。在本文中,我们将讨论如何下载和安装 JMeter。 安装 Java(已安装 Java 的此步骤可跳过) 要下载 Java,请遵…

Redis中文结果查看方式

背景 当使用redis时我们存储到缓存中可能会包含一些中文,例如下面命令 set test 中国 当执行查看时,发现客户端显示的并不是中文而是乱码,例如下面结果 get test \xe4\xb8\xad\xe5\x9b\xbd 现对【\xe4\xb8\xad\xe5\x9b\xbd】的查看有如下几个方式 方式一:通过客户端直…

井盖位移传感器厂家批发,守护井盖安全

窨井盖广泛分布于城市街道,其管理效果直接反映了城市治理的现代化程度。根据住房和城乡建设部发布的《关于进一步加强城市窨井盖安全管理的通知》,全国各地需加强窨井盖的安全管理。作为市政基础设施的一个重要的组成部分,井盖的管理工作不仅…

FindMy技术用于旅行箱

旅行箱,那是出门在外的我们不可或缺的伙伴。无论是商务出差,还是短途旅行,亦或是长途度假,旅行箱都以其便捷的方式,陪伴着我们的整个行程。 然而,在旅途中,丢失旅行箱是一件非常棘手的问题&…

Spring Cloud LoadBalancer 简单介绍与实战

前言 本文为SpringCloud的学习笔记,如有错误,希望各位高手能指出,主要介绍SpringCloudLoadBalancer的基本概念和实战 文章目录 前言什么是LoadBalancer负载均衡分类服务端负载均衡客户端负载均衡服务端负载均衡和客户端负载均衡的优缺点 常见…

主播产品转场(款)话术

直播转场话术要点 在直播过程中,转场话术是非常重要的一部分。它可以帮助主播J顺利地将一个主题或场景过渡到另一个主题或场景,同时吸引观众的注意力。提高直播的观赏性和互动性。以下是一些直播转场话术的要点: 一、过渡性话语 过渡性话语是连接两个…

交叉导轨在光学工作台起什么重要作用?

光学工作台常常需要承载和移动各种光学元件和仪器,如望远镜、显微镜、光谱仪等,这些设备需要在空间中进行精确的定位和稳定支撑,而交叉导轨作为一种高精度、高刚度的直线传动元件,为光学工作台提供了重要的支撑和导向。 1>交叉…

Springboot将多个图片导出成zip压缩包

Springboot将多个图片导出成zip压缩包 将多个图片导出成zip压缩包 /*** 判断时间差是否超过6小时* param startTime 开始时间* param endTime 结束时间* return*/public static boolean isWithin6Hours(String startTime, String endTime) {// 定义日期时间格式DateTimeFormatt…

140. 单词拆分 II

140. 单词拆分 II Java错误代码&#xff1a;不该回溯数组的&#xff0c;回溯数组是以固定顺序来的&#xff0c;应该回溯字符串&#xff01; class Solution {StringBuilder sb;List<String> list;List<String> tmp;private String getString() {StringBuilder str…

Chrome网页前端组件调试模式,获取核心业务逻辑

进入网页&#xff0c;点击F12&#xff0c;弹出开发者工具对话框&#xff0c;如下图 定位目标组件&#xff0c;如按钮&#xff0c;修改html&#xff0c;插入οnclick"debugger"代码 在网页点击该按钮&#xff0c;触发调试模式 不停按F11&#xff0c;逐个检索文件…

Flink Flink中的分流

一、什么是分流 所谓“分流”&#xff0c;就是将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个DataStream&#xff0c;定义一些筛选条件&#xff0c;将符合条件的数据拣选出来放到对应的流里。 二、基于filter算子的简单实现分流 其实根据条件筛选数据的需求…

Windows核心编程 进程

目录 一、进程概述 二、创建进程相关API Winexec ShellExecute CreateProcess 三、进程退出相关API ExitProcess TerminateProcess GetCurrentProcess GetExitCodeProcess 四、如何理解虚拟内存空间 五、关于UAC 一、进程概述 进程&#xff1a;正在运行的程序 程…

虾皮插件:优化Shopee商家店铺运营的利器

在如今竞争激烈的电商市场中&#xff0c;如何提升Shopee商家店铺的运营效率和销售业绩成为了摆在每个商家面前的一道难题。然而&#xff0c;幸运的是&#xff0c;虾皮插件-知虾的出现为商家们带来了一种全新的解决方案。本文将介绍虾皮插件的用途和优势&#xff0c;并详细介绍其…