ElasticSearch 7 SQL 详解

news2025/1/10 2:14:28

平时使用Elasticsearch的时候,会在Kibana中使用Query DSL来查询数据.每次要用到Query DSL时都基本忘光了,需要重新在回顾一遍,最近发现Elasticsearch已经支持SQL查询了(6.3版本以后),整理了下一些用法.

简介

Elasticsearch SQL是一个X-Pack组件,它允许针对Elasticsearch实时执行类似SQL的查询.无论使用REST接口,命令行还是JDBC,任何客户端都可以使用SQL对Elasticsearch中的数据进行原生搜索和聚合数据.可以将Elasticsearch SQL看作是一种翻译器,它可以将SQL翻译成Query DSL.

Elasticsearch SQL具有如下特性:

  • 原生支持:Elasticsearch SQL是专门为Elasticsearch打造的.
  • 没有额外的零件:无需其他硬件,处理器,运行环境或依赖库即可查询Elasticsearch,Elasticsearch SQL直接在Elasticsearch内部运行.
  • 轻巧高效:Elasticsearch SQL并未抽象化其搜索功能,相反的它拥抱并接受了SQL来实现全文搜索,以简洁的方式实时运行全文搜索.

准备

先安装好Elasticsearch和Kibana,这里安装的是7.17.0版本

安装完成后在Kibana中 http://127.0.0.1:5601/app/dev_tools#/console{target=“_blank”}
导入测试数据,数据地址: https://github.com/macrozheng/mall-learning/blob/master/document/json/accounts.json{target=“_blank”}

直接在Kibana的Dev Tools中运行如下命令即可:

POST /account/_bulk
{"index":{"_id":"1"}}
{"account_number":1,"balance":39225,"firstname":"Amber","lastname":"Duke","age":32,"gender":"M","address":"880 Holmes Lane","employer":"Pyrami","email":"amberduke@pyrami.com","city":"Brogan","state":"IL"}
{"index":{"_id":"6"}}
{"account_number":6,"balance":5686,"firstname":"Hattie","lastname":"Bond","age":36,"gender":"M","address":"671 Bristol Street","employer":"Netagy","email":"hattiebond@netagy.com","city":"Dante","state":"TN"}
{"index":{"_id":"13"}}
{"account_number":13,"balance":32838,"firstname":"Nanette","lastname":"Bates","age":28,"gender":"F","address":"789 Madison Street","employer":"Quility","email":"nanettebates@quility.com","city":"Nogal","state":"VA"}
{"index":{"_id":"18"}}
{"account_number":18,"balance":4180,"firstname":"Dale","lastname":"Adams","age":33,"gender":"M","address":"467 Hutchinson Court","employer":"Boink","email":"daleadams@boink.com","city":"Orick","state":"MD"}
{"index":{"_id":"20"}}
{"account_number":20,"balance":16418,"firstname":"Elinor","lastname":"Ratliff","age":36,"gender":"M","address":"282 Kings Place","employer":"Scentric","email":"elinorratliff@scentric.com","city":"Ribera","state":"WA"}
{"index":{"_id":"25"}}
{"account_number":25,"balance":40540,"firstname":"Virginia","lastname":"Ayala","age":39,"gender":"F","address":"171 Putnam Avenue","employer":"Filodyne","email":"virginiaayala@filodyne.com","city":"Nicholson","state":"PA"}
{"index":{"_id":"32"}}
{"account_number":32,"balance":48086,"firstname":"Dillard","lastname":"Mcpherson","age":34,"gender":"F","address":"702 Quentin Street","employer":"Quailcom","email":"dillardmcpherson@quailcom.com","city":"Veguita","state":"IN"}
{"index":{"_id":"37"}}
{"account_number":37,"balance":18612,"firstname":"Mcgee","lastname":"Mooney","age":39,"gender":"M","address":"826 Fillmore Place","employer":"Reversus","email":"mcgeemooney@reversus.com","city":"Tooleville","state":"OK"}
{"index":{"_id":"44"}}
{"account_number":44,"balance":34487,"firstname":"Aurelia","lastname":"Harding","age":37,"gender":"M","address":"502 Baycliff Terrace","employer":"Orbalix","email":"aureliaharding@orbalix.com","city":"Yardville","state":"DE"}
{"index":{"_id":"49"}}
{"account_number":49,"balance":29104,"firstname":"Fulton","lastname":"Holt","age":23,"gender":"F","address":"451 Humboldt Street","employer":"Anocha","email":"fultonholt@anocha.com","city":"Sunriver","state":"RI"}

第一个SQL查询

我们使用SQL来查询下前10条记录,可以通过format参数控制返回结果的格式,txt表示文本格式,看起来更直观点,默认为json格式.

在Kibana的Dev Tools中输入如下命令:

POST /_sql?format=txt
{
  "query": "SELECT account_number,address,age,balance FROM account LIMIT 10"
}

查询结果显示如下.

account_number |      address       |      age      |    balance    
---------------+--------------------+---------------+---------------
1              |880 Holmes Lane     |32             |39225          
6              |671 Bristol Street  |36             |5686           
13             |789 Madison Street  |28             |32838          
18             |467 Hutchinson Court|33             |4180           
20             |282 Kings Place     |36             |16418          
25             |171 Putnam Avenue   |39             |40540          
32             |702 Quentin Street  |34             |48086          
37             |826 Fillmore Place  |39             |18612          
44             |502 Baycliff Terrace|37             |34487          
49             |451 Humboldt Street |23             |29104          

如上实例,使用 _sql 指明使用SQL模块,在 query 字段中指定要执行的SQL语句.使用 format 指定返回数据的格式,数据格式可选项有以下几个,它们都是见名识意的:

formatAccept Http header说明
csvtext/csv逗号分隔
jsonapplication/jsonJson 格式
tsvtext/tab-separated-valuestab 分隔
txttext/plain文本格式
yamlapplication/yamlyaml
cborapplication/cbor简洁的二进制对象表示格式
smileapplication/smile类似于 cbor 的另一种二进制格式

将SQL转化为DSL

当我们需要使用Query DSL时,也可以先使用SQL来查询,然后通过Translate API转换即可.

例如我们翻译以下查询语句:

POST /_sql/translate
{
  "query": "SELECT account_number,address,age,balance FROM account WHERE age>32 LIMIT 10"
}

最终获取到Query DSL结果如下.

{
  "size" : 10,
  "query" : {
    "range" : {
      "age" : {
        "from" : 32,
        "to" : null,
        "include_lower" : false,
        "include_upper" : false,
        "boost" : 1.0
      }
    }
  },
  "_source" : false,
  "fields" : [
    {
      "field" : "account_number"
    },
    {
      "field" : "address"
    },
    {
      "field" : "age"
    },
    {
      "field" : "balance"
    }
  ],
  "sort" : [
    {
      "_doc" : {
        "order" : "asc"
      }
    }
  ]
}

然后可以用Query DSL 语法来查询:

GET /account/_search
{
  "size": 10,
  "query": {
    "range": {
      "age": {
        "from": 32,
        "to": null,
        "include_lower": false,
        "include_upper": false,
        "boost": 1
      }
    }
  },
  "_source": false,
  "fields": [
    {
      "field": "account_number"
    },
    {
      "field": "address"
    },
    {
      "field": "age"
    },
    {
      "field": "balance"
    }
  ],
  "sort": [
    {
      "_doc": {
        "order": "asc"
      }
    }
  ]
}

SQL和DSL混合使用

我们还可以将SQL和Query DSL混合使用,比如使用Query DSL来设置过滤条件.

例如查询 age在30-35 之间的记录,可以使用如下查询语句:

POST /_sql?format=txt
{
  "query": "SELECT account_number,address,age,balance FROM account",
  "filter": {
    "range": {
      "age": {
        "gte": 30,
        "lte": 35
      }
    }
  },
  "fetch_size": 10
}

SQL和ES对应关系

虽然 SQL 和 Elasticsearch 对于数据的组织方式(以及不同的语义)有不同的术语,但本质上它们的用途是相同的.下面是它们的映射关系表:

SQLElasticsearch说明
columnfield在 Elasticsearch 字段时,SQL 将这样的条目调用为 column.注意,在 Elasticsearch,一个字段可以包含同一类型的多个值(本质上是一个列表) ,而在 SQL 中,一个列可以只包含一个表示类型的值.Elasticsearch SQL 将尽最大努力保留 SQL 语义,并根据查询的不同,拒绝那些返回多个值的字段.
rowdocument列和字段本身不存在; 它们是行或文档的一部分.两者的语义略有不同: 行row往往是严格的(并且有更多的强制执行),而文档往往更灵活或更松散(同时仍然具有结构).
tableindex在 SQL 还是 Elasticsearch 中查询针对的目标
schemaimplicit在关系型数据库中,schema 主要是表的名称空间,通常用作安全边界.Elasticsearch没有为它提供一个等价的概念.

虽然这些概念之间的映射在语义上有些不同,但它们间更多的是有共同点,而不是不同点.

词法结构

ES SQL 的词法结构很大程度上类似于 ANSI SQL 本身.ES SQL 当前一次只能接受一个命令,这里的命令是由输入流结尾结束的 token 序列.这些 token 可以是关键字,标识符(带引号或者不带引号),文本(或者常量),特殊字符符号(通常是分隔符).

关键字

关键词这个其实跟我们写 SQL 语句那种关键字的定义是一样的,例如 SELECT,FROM 等都是关键字,需要注意的是,关键字不区分大小写.
SELECT * FROM my_table

如上示例,共有 4 个 token:SELECT, * ,FROM ,my_table,其中 SELECT,* ,FROM 是关键词,表示在 SQL 具有固定含义的词.而 my_table 是一个标识符,其表示了 SQL 中实体,如表,列等

标识符

标识符有两种类型:带引号的和不带引号的,示例如下:

SELECT ip_address FROM "hosts-*"

如上示例,查询中有两个标识符分别为不带引号的 ip_address 和带引号的 hosts-*(通配符模式).
因为 ip_address 不与任何关键字冲突,所以可以不带引号.而 hosts-*- (减号操作)和 * 冲突,所以要加引号.

📝注意: 对于标识符来说,应该尽量避免使用复杂的命名和与关键字冲突的命名,并且在输入的时候使用引号作为标识符,这样可以消除歧义.

直接常量

ES SQL 支持两种隐式的类型常量:字符串数字.

  • 字符串,字符串可以用单引号进行限定,例如: 'mysql' .如果在字符串中包含了单引号,则需要使用另一个单引号进行转义,例如: 'Captain EO''s Voyage' .
  • 数值常量,数值常量可以使用十进制和科学计数法进行表示,其示例如下:
1969    -- integer notation
3.14    -- decimal notation
.1234   -- decimal notation starting with decimal point
4E5     -- scientific notation (with exponent marker)
1.2e-3  -- scientific notation with decimal point

一个包含小数点的数值常量会被解析为 Double 类型.如果适合解析为整型,则解析为 Integer,否则解析为长整型(Long).

单引号,双引号

在 SQL 中,单引号和双引号具有不同的含义,不能互换使用.单引号用于声明字符串,而双引号用于表示标识符.示例如下:

SELECT "first_name" FROM "musicians"  WHERE "last_name"  = 'Carroll'    

如上示例,first_name,musicians,last_name 都是标识符,用双引号.而 Carroll 是字符串,用单引号.

特殊字符

一些非数字和字母的字符具有不同于运算符的专用含义,特殊字符有:

字符描述
*在一些上下文中表示数据表的所有字段,也可以表示某些聚合函数的参数.
,用于列举列表的元素
.用于数字常量或者分隔标识符限定符(表,列等)
()用于特定的 SQL 命令,函数声明,或者强制优先级.

运算符

ES SQL 中大多数的运算符它们的优先级都是相同的,并且是左关联.如果需要修改优先级,则要用括号来强制改变其优先级.下表是 ES SQL 支持的运算符和其优先级:

运算符结合性说明
.左结合限定符或者分割符
::左结合PostgreSQL-style 风格的类型转换符
+ -右结合一元加减符
* / %左结合乘法,除法,取模
+ -左结合加法,减法运算
BETWEEN IN LIKE范围包含,字符匹配
< > <= >= = <=> <> !=比较运算
NOT右结合逻辑非
AND左结合逻辑与
OR 左结合逻辑或

注释

ES SQL 支持两种注释:单行和多行注释,其示例如下:

-- single line comment,单行注释

/* multi
   line
   comment
   that supports /* nested comments */
   多行注释
   */

常用SQL操作

语法介绍

在ES中使用SQL查询的语法与在数据库中使用基本一致,具体格式如下:

SELECT select_expr [, ...]
[ FROM table_name ]
[ WHERE condition ]
[ GROUP BY grouping_element [, ...] ]
[ HAVING condition]
[ ORDER BY expression [ ASC | DESC ] [, ...] ]
[ LIMIT [ count ] ]
[ PIVOT ( aggregation_expr FOR column IN ( value [ [ AS ] alias ] [, ...] ) ) ]

WHERE

可以使用WHERE语句设置查询条件,比如查询state字段为VA的记录,查询语句如下.

POST /_sql?format=txt
{
  "query": "SELECT account_number,address,age,balance,state FROM account WHERE state='VA' LIMIT 10"
}

查询结果如下:

account_number |      address       |      age      |    balance    |     state     
---------------+--------------------+---------------+---------------+---------------
13             |789 Madison Street  |28             |32838          |VA             
486            |991 Applegate Court |22             |35902          |VA             
703            |489 Flatlands Avenue|29             |27443          |VA             
835            |641 Royce Street    |25             |46558          |VA             
897            |731 Poplar Street   |25             |45973          |VA             
564            |842 Congress Street |22             |43631          |VA             
588            |301 Anna Court      |31             |43531          |VA             
660            |916 Amersfort Place |33             |46427          |VA             
797            |919 Quay Street     |26             |6854           |VA             
836            |953 Dinsmore Place  |25             |20797          |VA   

GROUP BY

我们可以使用 GROUP BY 语句对数据进行分组,统计出分组记录数量,最大age和平均balance等信息,查询语句如下.

POST /_sql?format=txt
{
  "query": "SELECT state,COUNT(*),MAX(age),AVG(balance) FROM account GROUP BY state LIMIT 10"
}

HAVING

我们可以使用 HAVING 语句对分组数据进行二次筛选,比如筛选分组记录数量大于15的信息,查询语句如下.

POST /_sql?format=txt
{
  "query": "SELECT state,COUNT(*),MAX(age),AVG(balance) FROM account GROUP BY state HAVING COUNT(*)>15 LIMIT 10"
}

查询结果如下:

     state     |   COUNT(*)    |   MAX(age)    |   AVG(balance)   
---------------+---------------+---------------+------------------
AK             |22             |40             |26131.863636363636
AL             |25             |40             |25739.56          
AR             |18             |39             |27238.166666666668
CA             |17             |40             |22517.882352941175
CT             |16             |39             |28278.4375        
DC             |24             |40             |23180.583333333332
FL             |18             |38             |20443.444444444445

ORDER BY

我们可以使用ORDER BY语句对数据进行排序,比如按照balance字段从高到低排序,查询语句如下.

POST /_sql?format=txt
{
  "query": "SELECT account_number,address,age,balance,state FROM account ORDER BY balance DESC LIMIT 10 "
}

查询结果如下:

account_number |       address        |      age      |    balance    |     state     
---------------+----------------------+---------------+---------------+---------------
248            |717 Hendrickson Place |36             |49989          |WA             
854            |603 Cooper Street     |25             |49795          |AL             
240            |659 Highland Boulevard|35             |49741          |NH             
97             |512 Cumberland Walk   |40             |49671          |MO             
842            |833 Bushwick Court    |23             |49587          |TX             
168            |975 Flatbush Avenue   |20             |49568          |IL             
803            |963 Highland Avenue   |25             |49567          |MS             
926            |833 Quincy Street     |21             |49433          |VT             
954            |688 Hart Street       |22             |49404          |MD             
572            |994 Chester Court     |20             |49355          |UT    

DESCRIBE

我们可以使用 DESCRIBE 语句查看表(ES中为索引)中有哪些字段,比如查看account表的字段,查询语句如下.

POST /_sql?format=txt
{
  "query": "DESCRIBE account"
}

查询结果如下:

     column      |     type      |    mapping    
-----------------+---------------+---------------
account_number   |BIGINT         |long           
address          |VARCHAR        |text           
address.keyword  |VARCHAR        |keyword        
age              |BIGINT         |long           
balance          |BIGINT         |long           
city             |VARCHAR        |text           
city.keyword     |VARCHAR        |keyword        
email            |VARCHAR        |text           
email.keyword    |VARCHAR        |keyword        
employer         |VARCHAR        |text           
employer.keyword |VARCHAR        |keyword        
firstname        |VARCHAR        |text           
firstname.keyword|VARCHAR        |keyword        
gender           |VARCHAR        |text           
gender.keyword   |VARCHAR        |keyword        
lastname         |VARCHAR        |text           
lastname.keyword |VARCHAR        |keyword        
state            |VARCHAR        |text           
state.keyword    |VARCHAR        |keyword  

SHOW TABLES

我们可以使用 SHOW TABLES 查看所有的表(ES中为索引).

POST /_sql?format=txt
{
  "query": "SHOW TABLES"
}

查询结果如下:

#! this request accesses system indices: [.kibana_7.17.0_001, .kibana_task_manager_7.17.0_001], but in a future major version, direct access to system indices will be prevented by default
#! this request accesses system indices: [.apm-agent-configuration, .apm-custom-link, .async-search, .kibana_7.17.0_001, .kibana_task_manager_7.17.0_001, .tasks], but in a future major version, direct access to system indices will be prevented by default
    catalog    |             name              |     type      |     kind      
---------------+-------------------------------+---------------+---------------
my-application |.apm-agent-configuration       |TABLE          |INDEX          
my-application |.apm-custom-link               |TABLE          |INDEX          
my-application |.async-search                  |TABLE          |INDEX          
my-application |.kibana                        |VIEW           |ALIAS          
my-application |.kibana_7.17.0                 |VIEW           |ALIAS          
my-application |.kibana_7.17.0_001             |TABLE          |INDEX          
my-application |.kibana_task_manager           |VIEW           |ALIAS          
my-application |.kibana_task_manager_7.17.0    |VIEW           |ALIAS          
my-application |.kibana_task_manager_7.17.0_001|TABLE          |INDEX          
my-application |.tasks                         |TABLE          |INDEX          
my-application |account                        |TABLE          |INDEX          
my-application |kibana_sample_data_flights     |TABLE          |INDEX 

支持的函数

使用SQL查询ES中的数据,不仅可以使用一些SQL中的函数,还可以使用一些ES中特有的函数.

查询支持的函数

我们可以使用 SHOW FUNCTIONS 语句查看所有支持的函数,比如搜索所有带有 DATE 字段的函数可以使用如下语句.

POST /_sql?format=txt
{
  "query": "SHOW FUNCTIONS LIKE '%DATE%'"
}

查询结果如下:

     name      |     type      
---------------+---------------
CURDATE        |SCALAR         
CURRENT_DATE   |SCALAR         
DATEADD        |SCALAR         
DATEDIFF       |SCALAR         
DATEPART       |SCALAR         
DATETIME_FORMAT|SCALAR         
DATETIME_PARSE |SCALAR         
DATETRUNC      |SCALAR         
DATE_ADD       |SCALAR         
DATE_DIFF      |SCALAR         
DATE_PARSE     |SCALAR         
DATE_PART      |SCALAR         
DATE_TRUNC     |SCALAR  

全文搜索函数

全文搜索函数是ES中特有的,当使用 MATCHQUERY 函数时,会启用全文搜索功能,SCORE 函数可以用来统计搜索评分.

MATCH()

使用MATCH函数查询address中包含Street的记录.

POST /_sql?format=txt
{
  "query": "SELECT account_number,address,age,balance,SCORE() FROM account WHERE MATCH(address,'Street') LIMIT 10"
}

查询结果如下:

account_number |        address        |      age      |    balance    |    SCORE()    
---------------+-----------------------+---------------+---------------+---------------
6              |671 Bristol Street     |36             |5686           |0.95395315     
13             |789 Madison Street     |28             |32838          |0.95395315     
32             |702 Quentin Street     |34             |48086          |0.95395315     
49             |451 Humboldt Street    |23             |29104          |0.95395315     
51             |334 River Street       |31             |14097          |0.95395315     
63             |510 Sedgwick Street    |30             |6077           |0.95395315     
87             |446 Halleck Street     |22             |1133           |0.95395315     
107            |694 Jefferson Street   |28             |48844          |0.95395315     
138            |422 Malbone Street     |39             |9006           |0.95395315     
140            |878 Schermerhorn Street|32             |26696          |0.95395315   
QUERY()

使用 QUERY 函数查询address中包含Street的记录.

POST /_sql?format=txt
{
  "query": "SELECT account_number,address,age,balance,SCORE() FROM account WHERE QUERY('address:Street') LIMIT 10"
}

查询结果如下:

account_number |        address        |      age      |    balance    |    SCORE()    
---------------+-----------------------+---------------+---------------+---------------
6              |671 Bristol Street     |36             |5686           |0.95395315     
13             |789 Madison Street     |28             |32838          |0.95395315     
32             |702 Quentin Street     |34             |48086          |0.95395315     
49             |451 Humboldt Street    |23             |29104          |0.95395315     
51             |334 River Street       |31             |14097          |0.95395315     
63             |510 Sedgwick Street    |30             |6077           |0.95395315     
87             |446 Halleck Street     |22             |1133           |0.95395315     
107            |694 Jefferson Street   |28             |48844          |0.95395315     
138            |422 Malbone Street     |39             |9006           |0.95395315     
140            |878 Schermerhorn Street|32             |26696          |0.95395315     

SQL CLI

如果你不想使用Kibana来使用ES SQL的话,也可以使用ES自带的SQL CLI来查询,该命令位于ES的bin目录下.

使用如下命令启动SQL CLI:

elasticsearch-sql-cli http://localhost:9200

然后直接输入SQL命令即可查询了,注意要加分号.

SELECT account_number,address,age,balance FROM account LIMIT 10;

ES SQL 的局限性

使用SQL查询ES有一定的局限性,没有原生的Query DSL那么强大,对于嵌套属性和某些函数的支持并不怎么好,但是平时用来查询下数据基本够用了.

ES SQL 使用实战

我们先准备数据,此处我们将使用 Kibana 提供的航班数据:

如下图,在 Kibana 中点击左边栏的 Analytics 下的 Overview ,右边的页面中选择 DashBoard 然后点击 Install some sample data 链接,
再点击 Sample flight data 即可加入航班的数据.
在这里插入图片描述
可以使用以下语句查看航班数据:

POST /kibana_sample_data_flights/_search
{
  "query": {
    "match_all": {}
  }
}

下面来看看常用的 SQL 如何编写.

1. WHERE

我们过滤出目的地为 US 的数据:

POST /_sql?format=txt
{
  "query": "SELECT FlightNum, OriginWeather, OriginCountry, Carrier FROM kibana_sample_data_flights WHERE DestCountry = 'US'"
}

查询结果如下:

   FlightNum   |   OriginWeather   | OriginCountry |    Carrier     
---------------+-------------------+---------------+----------------
R43CELD        |Cloudy             |US             |JetBeats        
3YAQM9U        |Clear              |US             |JetBeats        
8SHQI41        |Cloudy             |US             |JetBeats        
HF9AP10        |Sunny              |US             |JetBeats        
ZTL6FPB        |Heavy Fog          |IT             |ES-Air          
TF9BTQL        |Clear              |JP             |Kibana Airlines 
T9QK7GX        |Clear              |IN             |Logstash Airways
4AHGESO        |Rain               |ZA             |Kibana Airlines 
J684XSR        |Sunny              |AR             |JetBeats        
T390OH4        |Cloudy             |IN             |ES-Air          
Q33SYKK        |Sunny              |KR             |JetBeats        
JBQ50Y2        |Clear              |IT             |Logstash Airways

2. GROUP BY

可以使用 GROUP BY 语句对数据进行分组聚合统计操作,例如查询航班分组的平均飞行距离等.其示例如下:

POST /_sql?format=txt
{
  "query": "SELECT count(*),max(DistanceMiles), avg(DistanceMiles) FROM kibana_sample_data_flights GROUP BY DestCountry"
}

如上示例,我们以目的地国家进行分组,然后统计每个分组的数量,最大的飞行距离,平均飞行距离.其结果如下:

   count(*)    |max(DistanceMiles)|avg(DistanceMiles)
---------------+------------------+------------------
46             |7600.7158203125   |3233.800320625305 
305            |12140.8603515625  |6603.605808945953 
377            |9917.6455078125   |3128.910634331741 
416            |10832.3994140625  |7915.6610843951885
944            |10600.296875      |4077.664177652133 
691            |10293.208984375   |2775.8247816469493
45             |12075.3935546875  |7542.028591579861 
1096           |12353.7802734375  |5037.134736095902 
91             |10000.7255859375  |5683.497867123111 
278            |10030.87109375    |3448.2222546090325
48             |9670.9072265625   |3278.826272328695 
237            |10575.1279296875  |5419.154288118902 
15             |10346.84765625    |3214.9680114746093

3. HAVING

可以使用 HAVING 对分组的数据进行二次筛选,比如筛选分组中记录数大于 100 的数据,其结果如下:

POST /_sql?format=txt
{
  "query": "SELECT count(*),max(DistanceMiles), avg(DistanceMiles) FROM kibana_sample_data_flights GROUP BY DestCountry HAVING COUNT(*) > 100"
}

我们过滤出了分组中记录数大于 100 的数据,其结果如下:

   count(*)    |max(DistanceMiles)|avg(DistanceMiles)
---------------+------------------+------------------
305            |12140.8603515625  |6603.605808945953 
377            |9917.6455078125   |3128.910634331741 
416            |10832.3994140625  |7915.6610843951885
944            |10600.296875      |4077.664177652133 
691            |10293.208984375   |2775.8247816469493
1096           |12353.7802734375  |5037.134736095902 
278            |10030.87109375    |3448.2222546090325
237            |10575.1279296875  |5419.154288118902 
449            |10282.5048828125  |3213.2889483309536
373            |10774.0           |5064.675941446831 

4. ORDER BY

我们可以使用 ORDER BY 进行排序,例如将平均飞行距离降序排序,其结果如下:

POST /_sql?format=txt
{
  "query": "SELECT count(*),max(DistanceMiles), avg(DistanceMiles) as avgDistance FROM kibana_sample_data_flights GROUP BY DestCountry HAVING COUNT(*) > 100 ORDER BY avgDistance desc"
}

如上示例,我们将数据用平均距离排序,其结果为

   count(*)    |max(DistanceMiles)|   avgDistance    
---------------+------------------+------------------
416            |10832.3994140625  |7915.6610843951885
305            |12140.8603515625  |6603.605808945953 
283            |10556.7587890625  |6030.0211101842015
237            |10575.1279296875  |5419.154288118902 
214            |11447.2265625     |5323.084783429297 
774            |11407.380859375   |5280.042444507589 
116            |10553.98828125    |5118.16688169282  
373            |10774.0           |5064.675941446831 

5. 分页

分页有多种实现方式,可以使用 limit,top,fetch_size 来进行分页.

1,使用limit 分页操作

POST /_sql?format=txt
{
  "query": "SELECT FlightNum, OriginWeather, OriginCountry, Carrier FROM kibana_sample_data_flights WHERE DestCountry = 'US' limit 10"
}

2,使用 top 进行分页

POST /_sql?format=txt
{
  "query": "SELECT top 10 FlightNum, OriginWeather, OriginCountry, Carrier FROM kibana_sample_data_flights WHERE DestCountry = 'US'"
}

3,使用 fetch_size 进行分页

POST /_sql?format=txt
{
  "query": "SELECT FlightNum, OriginWeather, OriginCountry, Carrier FROM kibana_sample_data_flights WHERE DestCountry = 'US'",
  "fetch_size": 10
}

其结果如下:

   FlightNum   | OriginWeather | OriginCountry |    Carrier     
---------------+---------------+---------------+----------------
R43CELD        |Cloudy         |US             |JetBeats        
3YAQM9U        |Clear          |US             |JetBeats        
8SHQI41        |Cloudy         |US             |JetBeats        
HF9AP10        |Sunny          |US             |JetBeats        
ZTL6FPB        |Heavy Fog      |IT             |ES-Air          
TF9BTQL        |Clear          |JP             |Kibana Airlines 
T9QK7GX        |Clear          |IN             |Logstash Airways
4AHGESO        |Rain           |ZA             |Kibana Airlines 
J684XSR        |Sunny          |AR             |JetBeats        
T390OH4        |Cloudy         |IN             |ES-Air  

6. 子查询

ES SQL 是可以支持类似于 SELECT X FROM (SELECT * FROM Y) 这样简单的子查询的

POST /_sql?format=txt
{
  "query": "SELECT avg(data.DistanceMiles) from (SELECT FlightNum, OriginWeather, OriginCountry, Carrier, DistanceMiles FROM kibana_sample_data_flights WHERE DestCountry = 'US') as data"
}

其结果如下:

avg(data.DistanceMiles)
-----------------------
4714.944895442431      

参考资料

官方文档:xpack-sql{target=“_blank”}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1245189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java--static的应用知识:代码块

1.代码块概述 代码块是类的5大成分之一(成员变量、构造器、方法、代码块、内部类) 2.代码块分为两种&#xff1a; 2.1.静态代码块&#xff1a; ①格式&#xff1a;static{ } ②特点&#xff1a;类加载时自动执行&#xff0c;由于类只会加载一次&#xff0c;所以静态代码块…

【PPspliT】ppt转pdf-保留过渡动画

网址 http://www.maxonthenet.altervista.org/ppsplit.php 下载安装 使用 再次打开ppt&#xff0c;就能在上方的选项栏里头看到了&#xff1a;

增量有余、后劲不足,星途汽车10月份销量环比下降3.9%

撰稿|行星 来源|贝多财经 近日&#xff0c;奇瑞集团发布了10月销量月报。报告显示&#xff0c;奇瑞集团于2023年10月销售汽车20.03万辆&#xff0c;同比增长50.8%&#xff0c;单月销量首次突破20万辆&#xff1b;2023年前10个月的累计销量为145.36辆&#xff0c;同比增长41.6…

第二证券:北证50指数一枝独秀 短剧游戏概念股持续活跃

周三&#xff0c;沪深两市三大指数颤动调整&#xff0c;北证50指数“鹤立鸡群”&#xff0c;大涨超8%。到收盘&#xff0c;上证综指报3043.61点&#xff0c;跌0.79%&#xff1b;深证成指报9855.66点&#xff0c;跌1.41%&#xff1b;创业板指报1950.01点&#xff0c;跌1.73%。沪…

基于yolov2深度学习网络的喝水行为检测系统matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、YOLOv2网络原理 4.2、基于YOLOv2的喝水行为检测 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; warning off;…

Spark---基于Yarn模式提交任务

Yarn模式两种提交任务方式 一、yarn-client提交任务方式 1、提交命令 ./spark-submit --master yarn --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100 或者 ./spark-submit --master yarn–client --class org.apache.s…

Redisson分布式锁源码解析、集群环境存在的问题

一、使用Redisson步骤 Redisson各个锁基本所用Redisson各个锁基本所用Redisson各个锁基本所用 二、源码解析 lock锁 1&#xff09; 基本思想&#xff1a; lock有两种方法 一种是空参 另一种是带参 * 空参方法&#xff1a;会默认调用看门狗的过期时间30*1000&…

如何利用电商在线客服软件提升服务质量和用户体验

在当今数字化时代&#xff0c;电子商务已经成为人们购物的主要方式之一。然而&#xff0c;与传统实体店不同&#xff0c;电商平台无法提供实时的面对面咨询和解答问题的服务。为了弥补这一缺陷&#xff0c;越来越多的电商企业开始采用在线客服软件&#xff0c;以提供更好的服务…

CUDA学习笔记9——CUDA 共享内存 / Shared Memory

由于共享内存拥有仅次于寄存器的读写速度&#xff0c;比全局内存快得多。因此&#xff0c;能够用共享内存访问替换全局内存访问的场景都可以考虑做对应的优化。 不利用共享内存的矩阵乘法 不利用共享内存的矩阵乘法的直接实现。每个线程读取A的一行和B的一列&#xff0c;并计…

Vector - CANoe - Vector Hardware Manager以太网

前面的文章中有介绍过基于Network based mode和channel base mode的环境配置&#xff0c;不过我们都是使用比较旧的办法&#xff0c;在我使用了一段时间Vector Hardware Manager配置之后发现这个更加好用结合之前的配置方法&#xff0c;使用起来也更加的灵活&#xff0c;今天就…

Kafka 常用功能总结(不断更新中....)

kafka 用途 业务中我们经常用来两个方面 1.发送消息 2.发送日志记录 kafka 结构组成 broker&#xff1a;可以理解成一个单独的服务器&#xff0c;所有的东西都归属到broker中 partation&#xff1a;为了增加并发度而做的拆分&#xff0c;相当于把broker拆分成不同的小块&…

98年阿里P6测试猿晒出工资单,看完扎心了。。。

最近一哥们跟我聊天装逼&#xff0c;说他最近从阿里跳槽了&#xff0c;我问他跳出来拿了多少&#xff1f;哥们表示很得意&#xff0c;说跳槽到新公司一个月后发了工资&#xff0c;月入5万多&#xff0c;表示很满足&#xff01;这样的高薪资着实让人羡慕&#xff0c;我猜这是税后…

使用Git bash切换Gitee、GitHub多个Git账号

Git是分布式代码管理工具&#xff0c;使用命令行的方式提交commit、revert回滚代码。这里介绍使用Git bash软件来切换Gitee、GitHub账号。     假设在gitee.com上的邮箱是alicefoxmail.com 、用户名为alice&#xff1b;在github上的邮箱是bobfoxmail.com、用户名为bob。 账号…

【Java 进阶篇】Redis持久化之RDB:数据的安全守护者

Redis&#xff0c;作为一款高性能的键值存储系统&#xff0c;支持多种持久化方式&#xff0c;其中RDB&#xff08;Redis DataBase&#xff09;是其最常用的一种。RDB可以将当前时刻的数据快照保存到磁盘&#xff0c;以便在Redis重启时快速恢复数据。本文将深入探讨RDB的原理、配…

一文讲明Mybatis 的使用 超详细 【爆肝两万字教程】

我 | 在这里 &#x1f575;️ 读书 | 长沙 ⭐软件工程 ⭐ 本科 &#x1f3e0; 工作 | 广州 ⭐ Java 全栈开发&#xff08;软件工程师&#xff09; &#x1f383; 爱好 | 研究技术、旅游、阅读、运动、喜欢流行歌曲 &#x1f3f7;️ 标签 | 男 自律狂人 目标明确 责任心强 ✈️公…

Linux进程通信——信号(一)

原理 对于 Linux来说&#xff0c;实际信号是软中断&#xff0c;许多重要的程序都需要处理信号。 信号&#xff0c;为 Linux 提供了一种处理异步事件的方法。比如&#xff0c;终端用户输入了ctrlc来中断程序&#xff0c;会通过信号机制停止一个程序。 概述 信号的名字和编号 …

【CCF-PTA】第03届Scratch第04题 -- 数字加密

数字加密 【题目描述】 "狼群战术"是第二次世界大战中德军对大西洋上盟军商船所使用的潜艇战术&#xff0c;一度遏制住英国的海上贸易。直到艾伦图灵成功破译了德国的英格尔码密码&#xff0c;成为二战的一个重要转折点。时至今日&#xff0c;图灵仍然是计算机的一…

基于JavaWeb+SSM+Vue微信阅读小程序的设计和实现

基于JavaWebSSMVue微信阅读小程序的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏[Java 源码获取 源码获取入口 Lun文目录 第1章 绪论 1 1.1 课题背景 1 1.2 课题意义 1 1.3 研究内容 1 第2章 开发环境与技术 3 2.1 MYSQL数据库 3 2.2 JSP技…

Proteus下仿真AT89C51报“串行口通信失败,请检查电平适配是否正确。”解决办法

在Proteus下进行AT89C51串行口仿真时&#xff0c;如果遇到“串行口通信失败&#xff0c;请检查电平适配是否正确”的错误提示&#xff0c;以下是一些解决办法&#xff1a; 1. 了解AT89C51和外部设备的电平要求&#xff1a; 首先&#xff0c;了解AT89C51和外部设备之间的电平…

【Pytorch】Visualization of Feature Maps(3)

学习参考来自&#xff1a; Image Style Transform–关于图像风格迁移的介绍github&#xff1a;https://github.com/wmn7/ML_Practice/tree/master/2019_06_03 文章目录 风格迁移 风格迁移 风格迁移出处&#xff1a; 《A Neural Algorithm of Artistic Style》&#xff08;ar…